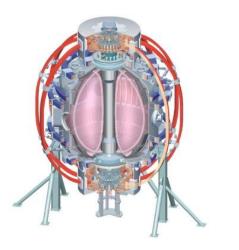


Supported by

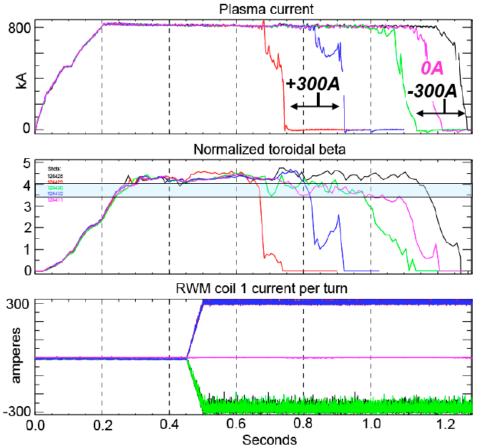

XP-902: The Ongoing Search For the n=3 EF Source in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

SPG, JEM, DAG, SAS

NSTX Team Review

1: Background, Previous Analysis, Present Conclusions 2: Shot Plans



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

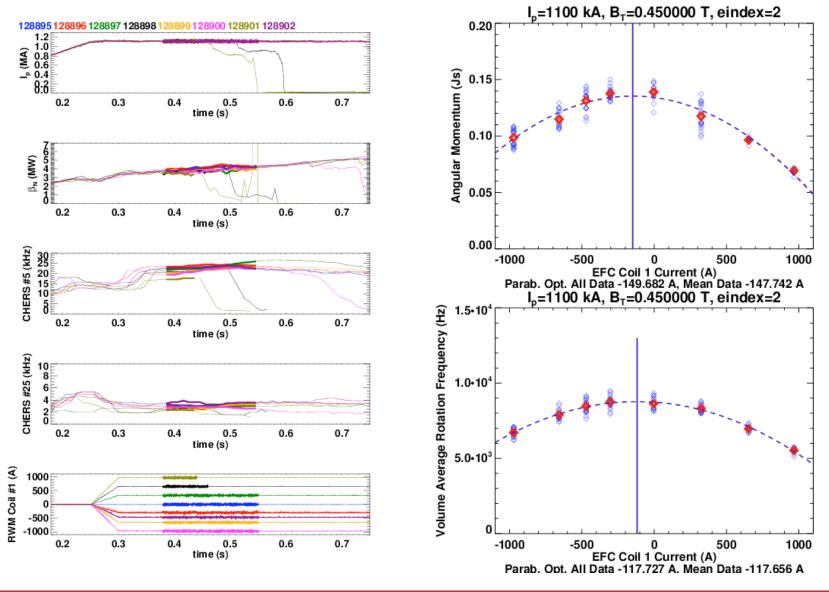
Office of

We All Remember That n=3 Correction Helps Performance

XP-902 Goals

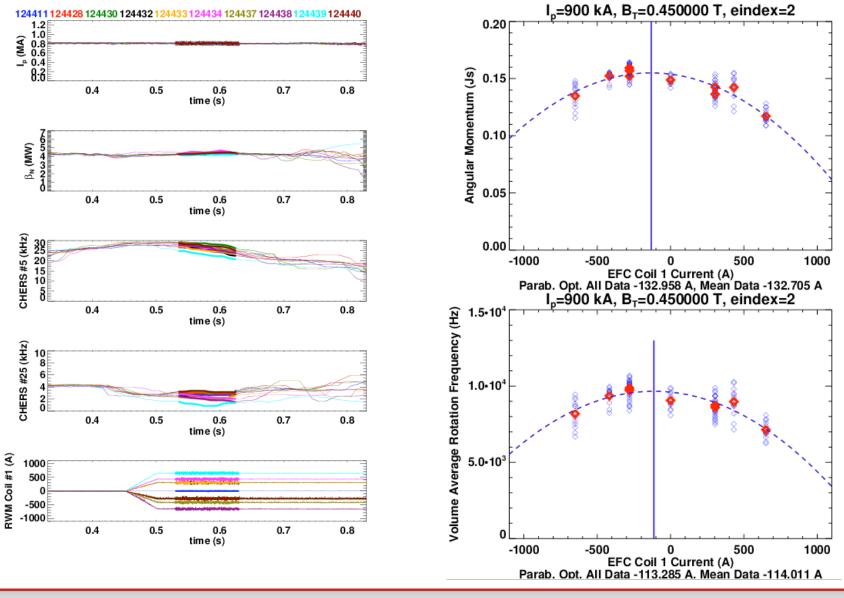
- 1: Resolve whether the TF or PF coils are the EF source.
- 2: If PF coils, resolve whether it is the PF3 or PF 5 coil.
- 3: Develop an appropriate dynamic correction model.

XP-902 Methods


1: Select appropriate combinations $[I_p, B_T, \kappa]$ in order to separate the contributions from various coil sets.

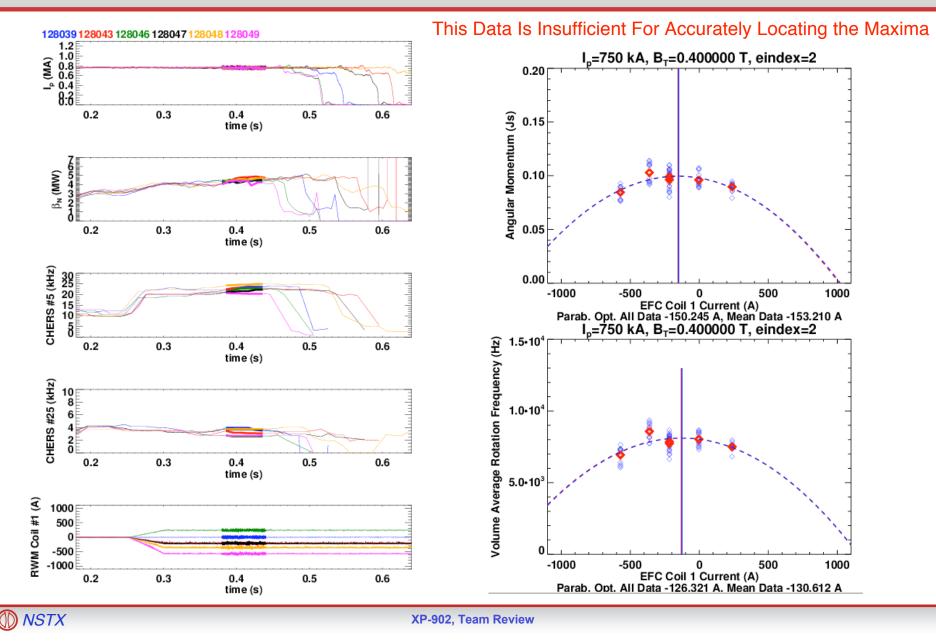
$$B_{T} \rightarrow I_{TF}$$
$$I_{P} \rightarrow I_{PF5}, I_{PF3}$$
$$\kappa \rightarrow I_{PF5}/I_{PF3}$$

2: For each combination of these parameters, scan the applied n=3 field magnitude and phase, in order to determine the optimal correction.


Case 1: XP 823, I_P=1100 kA, B_T=0.45 T (I)

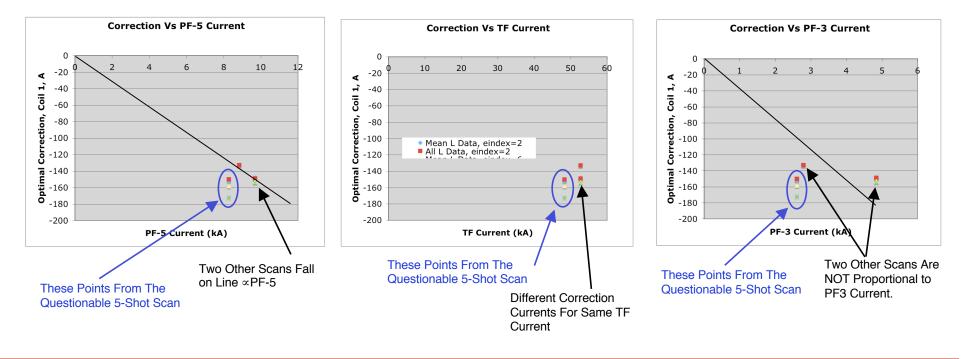
()) NSTX

XP-902, Team Review


Case 2: XP 701, I_P=800 kA, B_T=0.44 T

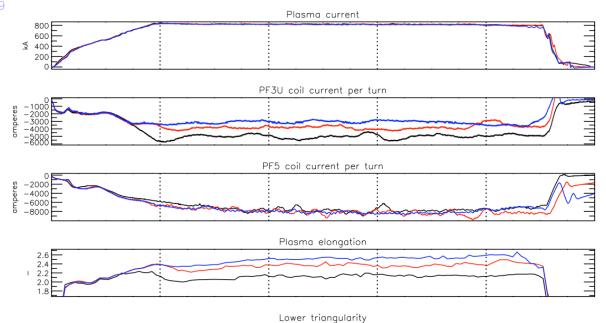
0 NSTX

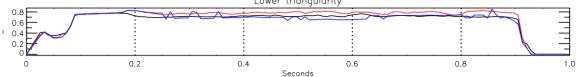
XP-902, Team Review

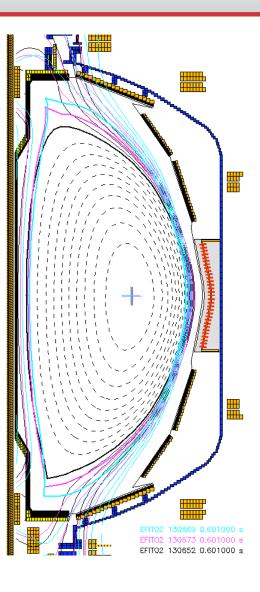

Case 3: XP 823, I_P=750 kA, B_T=0.4 T

5

Conclusion: *PF5 is Mostly Likely Source*, But Evidence is Not Conclusive


- Use total angular momentum as the figure of merit in determining optimal correction current
- Two "Good" scans are well correlated with PF-5 Current
 - Lower current, 5 shot scan is hard to fit in the trend.
- This is inferring a lot from just 2 points, so take some more data.

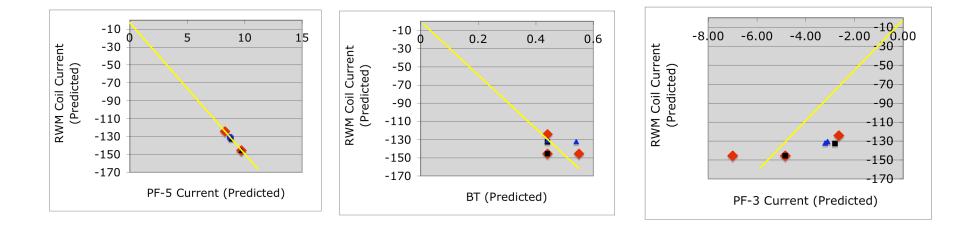



Resolve the PF5/PF3 Degeneracy Through Changing Kappa

- DAG question at group review: "Can a PF-3 EF be isolated from a PF-5 EF"
- Example Case From κ-scan in XP-809
- PF-5 current unchanged, but large variation in PF-3
 - κ: 2.2→2.0 Yields I_{PF3}: 3kA→5kA

Shots: • However, changes the distance to PF-3, so do only once. 130673

Part 1 Shot List: Continued Search For The EF Source


- Reference Shot:
 - high- κ , high- δ "2008-fiducial" shape. Hopefully "2008 fiducial shape"="2009 fiducial shape"
 - Should go into H-mode at t~110-115 ms, possibly with a "blip" of C.
 - Match early density evolution to 125329 (900kA), 128896 (1100kA), 128039 (750 kA).
- Method for Each $[I_P, B_T, \kappa]$ Combination.
 - Take a reference shot with no SPA currents.
 - Begin scan over n=3 magnitude and polarity:
 - I_{SPA1}=-250,250,-500,500,-750, then other values based on data.
 - Wider range required for larger I_{P.}
 - Continue until the L vs. RWM curve is properly resolved (7-8 shots)
 - Run analysis code between shots to ensure sufficient data.
- Repeat the above "method" under the following I_P, B_T combinations.
 - Hope that first 3 conditions can fully implicate PF5, PF3 or TF, no need for more.

ХР	Ip	BT	Ip/Bt	к	Correction	Priority	
823	750	0.4	1875	2.300	-153	Done, But Questionable	
701	800	0.44	1818	2.240	-132.7	Done	
823	1100	0.44	2500	2.360	-147.7	Done	
902	1100	0.55	2000	2.360		1	
902	750	0.44	1705	2.360		2	
902	1100	0.44	2500	2.100		3	
902	900	0.54	1667	2.300		4	
902	900	0.44	2045	2.300		5	

If Successful, Scans Should Resolve EF Source

- Assume that the PF5 coil is indeed the source of the error in determining the points below, and that the data is "perfect".
 - Black: Existing Good Points
 - Red: Points For First Day
 - Blue: Contingency
- Chosen $[I_P, B_T, \kappa]$ combinations should allow a determination of EF Source

Part 2: Improved Realtime Correction of n=3

- "Optimal" correction in 2008 used fixed ~300 A of n=3 correction, regardless of plasma current.
- Create new "tmf" algorithm:
 - imf="Initial Mode Feedback"
 - smf="Second Mode Feedback"
 - tmf="Third Mode Feedback"
- Simplest possible features for tmf:
 - Same pre-programmed waveform capability:

I_{SPAX}, Pr e Pr og

- Coupling parameters from each PF/TF coil to each RMW coil:

$$\sum G_{Ci,SPAX}I_C$$

- Same low-pass filtered n=1 FB requests, separate $B_R \& B_P$:

$$I_{LPF,BP,SPAX} + I_{LPF,BR,SPAX}$$

- Total request:

$$I_{tmf,SPAX} = I_{SPAX,Pr\,e\,Pr\,og} + \sum_{Ci=Coils} G_{Ci,SPAX} I_{Ci} + I_{LPF,BP,SPAX} + I_{LPF,BR,SPAX}$$

 $G_{PF5,SPA1} \approx -15 \ (A/kA)$ $G_{PF5,SPA2} \approx -15 \ (A/kA)$ $G_{PF5,SPA3} \approx +15 \ (A/kA)$

Part 2 Shot List: Testing of Optimized Correction

- Reference: Optimal I_P , B_T pair from previous scans.
 - Looks now like $[I_P, B_T] = [1100 \text{ kA}, 0.45\text{ T}]$ is a good configuration.
- Choose the PF5/SPA gain coefficients as:

 $G_{PF5,SPA1} \approx -15 \times f \quad (A/kA)$ $G_{PF5,SPA2} \approx -15 \times f \quad (A/kA)$ $G_{PF5,SPA3} \approx +15 \times f \quad (A/kA)$

• 8 (or less) shot scan of the Gain Multiplier "f", verifying that realtime correction works.

SPA 1 Optimal	SPA 2	SPA 3	Gain		SPA 2		
Gain	Optimal Gain	Optimal Gain	Multiplier	SPA 1 Gain	Gain	SPA 3 Gain	Shot Number
-15	-15	15	-1	15	15	-15	
-15	-15	15	-0.5	7.5	7.5	-7.5	
-15	-15	15	0	0	0	0	
-15	-15	15	0.5	-7.5	-7.5	7.5	
-15	-15	15	1	-15	-15	15	
-15	-15	15	1.5	-22.5	-22.5	22.5	
-15	-15	15	2	-30	-30	30	
-15	-15	15	2.5	-37.5	-37.5	37.5	

