
Dependence of momentum and particle pinch on collisionality

Wayne Solomon, PPPL

With S.M. Kaye, L.F. Delgado-Aparicio, V. Soukhanovskii ... and the NSTX Research Team

April 9, 2009

XP908 Final Review

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec

Culham Sci Ctr

College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U

Lodestar MIT

LANL

LLNL

Nova Photonics New York U

Old Dominion U

ORNL

PPPL PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD **U** Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

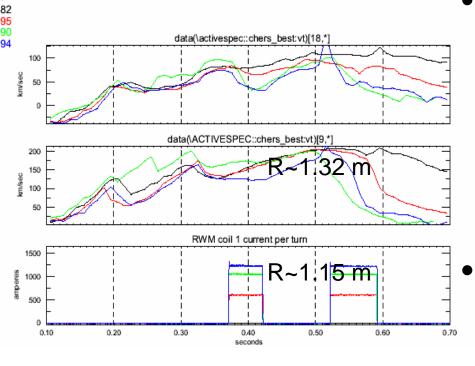
Dependence of momentum and particle pinch on collisionality

Aims:

- Compare dependence of momentum pinch velocity on collisionality with analytic theory and/or gyrokinetic predictions
- Compare momentum pinch velocity with particle pinch velocity
- Repeat with different q to begin to investigate q-dependence

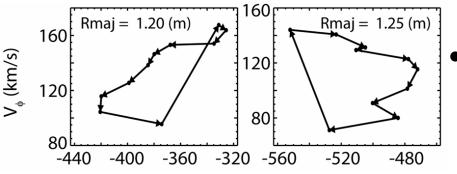
Technique:

- Use n=3 non-resonant magnetic perturbations to distort the rotation profile, allowing for separation of the roles of momentum diffusion vs convection (pinch).
- Scan collisionality by varying Ip, Bt at fixed q
 - As reported by Kaye et al, IAEA 2006
- Use Ne puffing and/or supersonic gas injection to perturb edge density and measure particle transport properties



Motivation

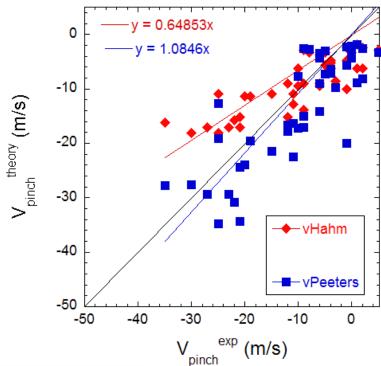
- Rotation widely acknowledged as playing critical and beneficial role in the performance of fusion plasmas
 - Stabilization of resistive wall modes and neoclassical tearing modes
 - Confinement improvement through turbulence suppression (E x B shear)
- Understanding momentum transport key to obtaining predictive knowledge of rotation for future devices
 - Momentum pinch physics important part of problem
- Size of momentum pinch will determine how peaked rotation will be in future devices
 - ITPA JEX TC-15

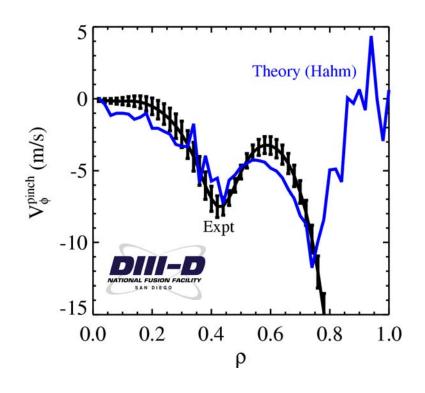


Perturbative τ_{ϕ} , χ_{ϕ} Can be Obtained from Transient Application of nRMP

Braking should be

- long enough to have measurable affect on rotation
- Not so long as to affect underlying plasma (ie shorter than momentum confinement time)
- If apply second pulse, need to wait for plasma to "recover"




- Must change V_{ϕ} independently of dV_{ϕ}/dr
 - can unravel relative contribution of χ_{ϕ} and V_{ϕ}^{pinch}

Reasonably Good Agreement Between Theory and Experiment on both NSTX and DIII-D

- Theory predicts drive of pinch through low-k turbulence
 - Coriolis drift, Peeters et al. PRL (2007)
 - ∇B, curvature drifts, Hahm et al. PoP (2007)

Experimental plan

Establish MHD quiescent H-mode (3+4 shots) Similar to #129922, Bt ~ 0.55 T, Ip ~ 1.1 MA Fail Success Defer Complete 3-point "collisionality" scan by varying Bt, Ip at fixed q (4+2 shots) (Bt, Ip) = (0.45, 0.9), (0.35, 0.7)Fail Success If lowest Bt produces MHD, try (0.4, 0.8), or

> Repeat scan, using edge density perturbations +NRMP (6+4 shots)

Establish suitable companion Lmode reference, and repeat Steps I-III (7+5 shots)

Repeat without NRMP (3+1 shots) (compare edge particle transport with/without NRMP)

skip