FIDA Blue/Red Shift XP (#917)

Motivation: Resolve discrepancy between FIDA & FIDA simulation code in special quiet plasmas so we trust it for instability studies

Goal:

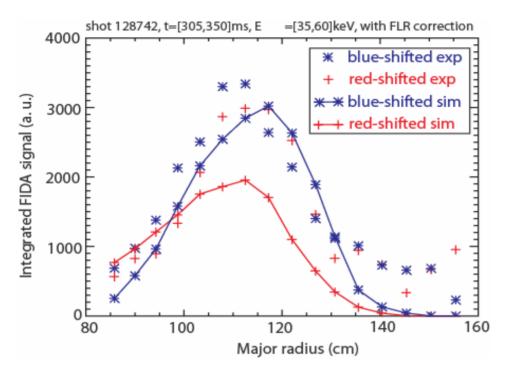
Validate predicted differences between red-shift & blue-shift

Approach: Use low voltage to avoid fast-ion instabilities; modest density (3-4 e13), vary field-line pitch and TF to alter theoretical red:blue ratio; deuterium fill gas

Field Line Helicity Asymmetry

Geometry: B_T is clockwise; I_p is counterclockwise; FIDA views vertically downward

Beam Population: Nearly all in co-direction


At large major radius, co-going ions come up towards lens → blue shift larger than red-shift

Finite Larmor-radius Effect

Consider a spatially peaked guiding center distribution.

- For clockwise B_T, fast ions gyrate downward at large major radius, upward at small major radius
- red-shifted profile shifts outward (relative to guiding center); red-shifted profile shifts inward

Poor agreement in this comparison

- Predicted blue larger than red (pitch effect)
- Predicted FLR effect opposes pitch effect
- •Little difference in experimental red & blue profiles but data quality is poor

Experimental Plan

- **1. Baseline Condition** Source B @ 65 keV & 50% duty cycle; I_p=0.8 MA; 5.5 kG, deuterium, 3-4e13 (2 shots); Source A at before & after for MSE
- 2. Toroidal Field Scan 4.5 kG, 3.5 kG (2 shots)
- 3. Plasma Current Scan 0.5 MA, 1.2 MA at 5.5 kG (2 shots)
- **4. Source C** Substitute for Source B in condition with largest observed red/blue asymmetry (1 shot)
- **5. Filter Scan** Scan angle of f-FIDA bandbass filter in favorite condition (3 shots)