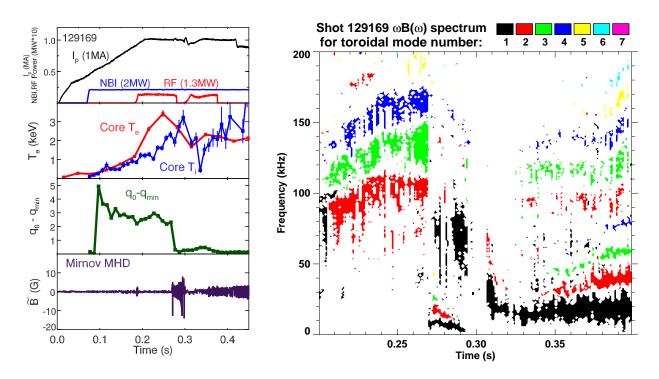
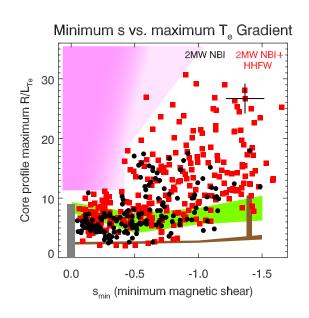
Princeton Plasma Physics Laboratory NSTX Experimental Proposal					
Title: Extending reversed shear scenarios					
OP-XP-939	Revision:	(Approval de Expiratio	Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)		
	PROPOSAL APPR	OVALS			
Responsible Author: H. Yu	ıh		Date		
ATI – ET Group Leader: K. Tritz		Date			
RLM - Run Coordinator: D. Gates			Date		
Responsible Division: Experimental Research Operations					
Chit Review Board (designated by Run Coordinator)					
MINOR MODIFI	CATIONS (Approved by	Experimental Re	esearch Operations)		

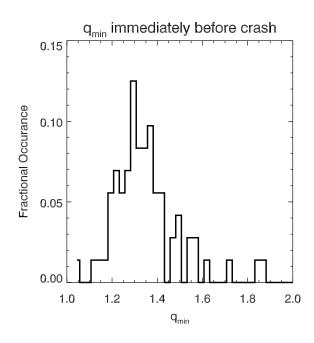
NSTX EXPERIMENTAL PROPOSAL

TITLE: Extending reversed shear scenarios No. OP-XP-939


AUTHORS: H. Yuh DATE:

1. Overview of planned experiment


This experiment seeks to extend the L-mode reversed shear discharges to a full current relaxation time by investigating and avoiding the MHD induced current redistribution observed on all reversed shear discharges made so far. The XP further seeks to transition into H-mode while maintaining a reversed shear q-profile.


2. Theoretical/empirical justification

Although high confinement ITBs have been observed in previous XPs, using NBI, NBI+RF (XP829), or RF only (XP821), a rapid influx of current to the core as fast or faster than the MSE time resolution (10ms) is routinely observed (see q_0 - q_{min} in third panel). This rapid change in q-profile ends the period of improved internal transport. While the primary goals of the XP in the past campaigns have been to document the q-profile and turbulence behavior during the RS phase, this XP will focus on two phases

- 1. T&T Avoiding the rapid redistribution of current to the core and characterizing turbulence through a current relaxation time. This could provide direct observations of ETG onset. Apply additional power during intermediate RS profiles to assess maximum accessible gradient.
- 2. ASC Maintaining the RS q-profile with the ITB through an H-mode transition has been discussed for years. It will be attempted in earnest in this XP.

3. Experimental run plan

The XP will focus on developing a RS scenario that does not result in a transition to a monotonic q-profile via MHD.

- 1. Recover conditions similar to 129169. This involves lithium evaportation at a moderate rate, 10-15 mg/min. Due to sensitivity of early current profile to density, it usually takes at least **5 shots** to achieve this. Use this time to start coupling RF at about 250-300ms.
- 2. Determine if 1.1 or 1.2MA improves RS conditions. Adjust I_p ramp rate to flatop ± 10 -20ms to observe effect on q. Inject early RF to increase conductivity to get higher currents. ~5 shots.
- 3. Select the best I_p and ramp rate to try and sustain the RS for as long as possible. ~10 shots.
 - a. Reduce NBI power by substituting Src A@90 with B@65, or turn off NBI completely.
 - b. Use only low power RF to sustain the ITB at powers below 1MW.
 - c. Reduce density to decrease collisionality, possibly delaying double tearing modes.
- 4. Select a sustained ITB shot and try to induce a L-H transition. ~10 shots.
 - a. Increase inner gap and center stack gas.
 - b. Increase beam power, C@65 or A@90 after some current profile relaxation at moderate shear reversal.

4. Required machine, NBI, RF, CHI and diagnostic capabilities

The RF XMP must have been completed RF will be required.

Lithium evaporation required at a moderate rate 10-15mg/min.

NBI Src A,B and C at 90 and 65kV will be required.

MSE and high-k diagnostics required.

Attach completed Physics Operations Request and Diagnostic Checklist.

5. Planned analysis

LRDFIT with MSE, TRANSP, gyrokinetic codes GS2 and/or GYRO, MHD stability codes will be used.

6. Planned publication of results

If results are of publication quality, they will be published in the appropriate journals.

PHYSICS OPERATIONS REQUEST

No. **OP-XP-**TITLE: DATE: **AUTHORS:** (use additional sheets and attach waveform diagrams if necessary) Describe briefly the most important plasma conditions required for the experiment: Start with model 129169 Reversed shear L-mode to begin. Lithium. Previous shot(s) which can be repeated: Previous shot(s) which can be modified: **Machine conditions** (specify ranges as appropriate, strike out inapplicable cases) $I_{TF}(kA)$: Flattop start/stop (s): $I_P(MA)$: Flattop start/stop (s): Configuration: Limiter / DN / LSN / USN Equilibrium Control: Outer gap / Isoflux (rtEFIT) Outer gap (m): Z position (m): Inner gap (m): Elongation κ: Upper/lower triangularity δ : Gas Species: Injector(s): **NBI** Species: **D** Voltage (kV) **A**: **C**: Duration (s): **B**: Phase between straps (°): **ICRF** Power (MW): Duration (s): CHI: Off/On Bank capacitance (mF): LITERs: Off/On Total deposition rate (mg/min): Configuration: Odd / Even / Other (attach detailed sheet EFC coils: Off/On

DIAGNOSTIC CHECKLIST

TITLE:
AUTHORS:

No. **OP-XP-**DATE:

Note special diagnostic requirements in Sec. 4

Diagnostic Diagnostic	Need	Want
Bolometer – tangential array		
Bolometer – divertor		
CHERS – toroidal	$\sqrt{}$	
CHERS – poloidal	$\sqrt{}$	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP		
Gas puff imaging		
Hα camera - 1D		
High-k scattering	$\sqrt{}$	
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism		
Magnetics – Flux loops		
Magnetics – Locked modes		
Magnetics – Pickup coils		
Magnetics – Rogowski coils		
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.		
Mirnov coils – poloidal array	V	
Mirnov coils – toroidal array	V	
Mirnov coils – 3-axis proto.		

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE	V	
NPA – E B scanning		
NPA – solid state		
Neutron measurements	V	
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz	V	
Reflectometer – correlation	V	
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering	V	
Ultrasoft X-ray arrays	V	
Ultrasoft X-rays – bicolor	V	
Ultrasoft X-rays – TG spectr.	V	
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		