Princeton Plasma Physics Laboratory NSTX Machine Proposal Title: Neon (gas-puff) injection within the lithium deposition framework Effective Date: Revision: 0 (Ref. OP-AD-97) **OP-XMP-Expiration Date:** (2 yrs. unless otherwise stipulated) **Procedure Approvals** Responsible author: Luis F. Delgado-Aparicio Date 04/29/2009 ATI (NSTX Physics Ops): Date RLM (NSTX Expt. Research Ops): Date Responsible Division: Experimental Research Operations **Procedure Requirements** designated by RLM NSTX Work Permit T-MOD (OP-AD-03) Independent Review **ES&H** Review MINOR MODIFICATIONS Approved by RLM

	REVIEWERS (design	nated by RLM)
Organization/Position	<u>Name</u>	Signature
ATI	D. Mueller	
Test Director		
Independent Reviewer		
NB		
RF		
Diagnostics		

TRAINING (designated by R	LM)		
Training required: No Yes Instructor			
Personnel (group, job title or individual name)	Read Only	Instruction	Hands- On
Training Rep			

RLM _____

NSTX MACHINE PROPOSAL

TITLE: Neon (gas-puff) injection within the lithium	No. OP-XMP-
deposition framework	
AUTHORS: L. Delgado-Aparicio, K. Tritz, B. Blanchard,	DATE: 04/29/2009
M. Cropper, R. Bell, M. Finkenthal, B.	
LeBlanc, S. Kaye, S. Sabbagh, W. Solomon	
and D. Stutman.	

1. Overview:

Before the application of Lithium to the PFCs, a brief neon puff (~10-50 ms) has been used as a perturbative transport tool in NSTX in order to asses impurity diffusivity as well convective (pinch) velocity. However, the application of Lithium deposition may have lowered the neutral density at the edge resulting in an increased neon mean free path (much stronger penetration as previously experienced), thus the standard H-modes collapsed rapidly. Now we have the expertise and the tools needed to control the gas puffs (e.g. operational knobs such as $t_{injection}$, $\Delta t_{injection}$, P_{Plenum} and Neon gas flow rates) in order to avoid the plasma collapse allowing the use of this perturbative tool in both MHD and T&T experimental proposals.

2. Justification:

Three experimental proposals have indicated the use of Neon injection to asses particle transport and the effect of RWM in the background plasma: a) XP931 on the Effect of the active stabilization of RWMs on the background plasma (Macroscopic Stability TSG), b) XP-921 on the Characterization of GAE modes & their effect on electron thermal transport (Transport and Turbulence & Wave and Particles TSGs) and c) XP 908 on the Dependence of momentum and particle pinch on collisionality (Transport and Turbulence TSG). The development of this perturbative tool is necessary for the success of these three experimental proposals mentioned above, since Lithium deposition is required in between plasma shots.

3. Plan:

Add 121162 NBI prescriptions to the morning fiducial shot. Lithium deposition will be added in subsequent shots (at rates of 15 and 30 mg/min for 10 minutes) with neon injection timed at t~350-400 ms for a time window of 10 ms; the flow rate chosen will be of 1.5 Torr·*l*/sec for different plenum pressures in the range of 100-600 T. Two shots for dialing the background conditions and four shots per Lithium deposition rate make a total of ten (10) plasma shots.

___121162 and/or morning fiducial___

Total shot number: 10 (including contingency)

4. Required machine, beam, ICRF and diagnostic capabilities:

Normal operations (e.g. as for fiducial morning shots). The neon bottle will be arranged by vacuum techs as described in the schematic drawing shown below.

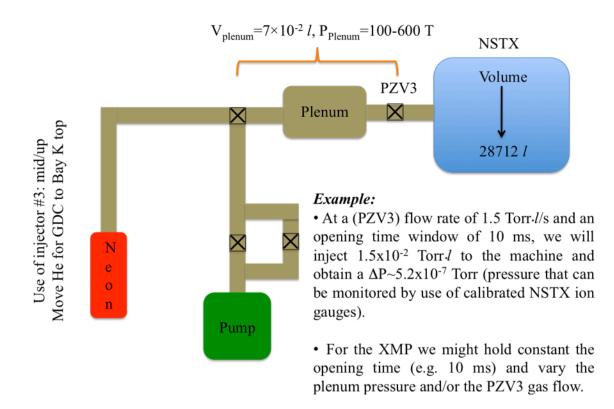


Fig 1.- Basic gas/pump diagram for neon tests during XMP

5. Sign off at run time:

5.1 Permission to Proceed:

Physics Operations Head

5.2 Documentation of results:

Documentation of the results completed, attached to proposal and sent to Ops. Center with copies to Cognizant Physicist and Head of Physics Operations.

Cognizant Physicist/Test Director

PHYSICS OPERATIONS REQUEST

\$U	ns-puff) injection within t	ne lithium	1	No. OP-XMP-
	on framework Delgado-Aparicio, <i>et al.</i>		I	DATE: 04/29/2009
Machine conditions (specify ranges as appropriate, use more than one sheet if necessary)				
I_{TF} (kA):	Flattop start/stop (s)):		
I _P (MA): 1.0 MA	Flattop start/stop (s)):		
Configuration: Limiter / DN / LSN / USN (strike out inapplicable cases)				
Outer gap (m):	Inner gap (m):		Z posit	ion (m):
Elongation k:	Upper/lower tria	ngularity δ:		
Gas Species:	Injector(s):			
NBI Species: D Vo	oltages (kV or off) A:90	B: 90	C: 90	Duration (s):
ICRF Power (MW)	: Phasing:		Duratic	on (s):
CHI: Off	Bank capacitance (mF):			
I ITED Off and	On Total deposition rate (r	ng/min): Potu		and 10 mg/min

LITERs: Off and On Total deposition rate (mg/min): Between 10 and 40 mg/min

EFC coils: Off and On Configuration: **Odd (n=1)**

Either: List previous shot numbers for setup:

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc. as appropriate. Accurately label the sketch with times and values.

DIAGNOSTIC CHECKLIST

TITLE: Neon (gas-puff) injection within the lithium deposition framework

No. **OP-XMP-**

AUTHORS: L. Delgado-Aparicio, et al.

DATE: 04/29/2009

Note special diagnostic requir Diagnostic	Need	Want
Bolometer – tangential array		
Bolometer – divertor		
CHERS – toroidal		
CHERS – poloidal		
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges	\checkmark	
Edge rotation diagnostic		
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP	\checkmark	
Gas puff imaging		
Hα camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism		
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Pickup coils	\checkmark	
Magnetics – Rogowski coils		
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.		
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.	\checkmark	

Note special diagnostic requir Diagnostic	Need	
MSE		
NPA – EllB scanning		
NPA – solid state		
Neutron measurements	\checkmark	
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		\checkmark
Spectrometer – VIPS		\checkmark
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays	\checkmark	
Ultrasoft X-rays – bicolor	\checkmark	
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		