

Supported by

Optimization of ELM pace-making with 3D Fields

J.M. Canik and A.C. Sontag, ORNL

NSTX XP Review Princeton, NJ May 6, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

ELM Pacing can reduce impurity buildup during Lienhanced discharges

- ELM-free H-mode shots have very large radiated power
- ELM pacing able to control this problem
- Need to develop scenario for longpulse, steady-state

2

...but the triggered ELMs are very large

- ELMs are much smaller at high κ
 - Most probable ELM size is $\Delta W_{tot}/W \sim 3\%$ at κ =2.4, \sim 20% at κ =2.0
 - Triggering frequency also higher
 - As is effectiveness in reducing P_{rad} buildup

National Laborator

Goal of XP: Li + n=3 high performance plasma with small ELMs and steady density/P_{rad}

- 1) Produce reference discharge (2 shots)
 - Reload 132592: I_p=1.0 MA, Bt=0.45 T, κ =2.2, δ =0.8, dr^{sep}~ -1 cm, P_{NBI} = 3 MW, LITER at ~ 50 mg/min, 600 mg/shot
 - Change dr^{sep} to ~ 0, κ to 2.5, adjust LITER to 40 mg/min, ~ 300 mg/shot (1 shot)
 - If necessary, increase LITER evaporation rate to get ELM-free conditions (1)
- Waveform optimization: maximize frequency, minimize duty cycle of n=3 (13 shots)
 - Starting values from 130670, but lower frequency to reduce braking: 1.2 kA, 11 ms pulses, 20 Hz repetition (1 shot)
 - Increase amplitude as much as possible to try to trigger ELMs faster (3 shots)
 - SPA current scan at fixed pulse width: 1.5, 2.0, 2.5 kA
 - At highest current, decrease pulse length as much as possible with reliable triggering (2 shots)
 - Increase frequency as much as possible, until excessive braking leads to termination of discharge (3 shots)
 - Add short (~2 ms) SPA current reversal to the end of each pulse, test if this allows further increase in pulse frequency (2 shots)

Goal of XP: Li + n=3 high performance plasma with small ELMs and steady density/P_{rad}

- 3) Shape optimization: minimize ELM size, maximize frequency (12 shots)
 - Reduce κ to 2.1
 - start with best SPA waveform from series 2) (1 shot)
 - reduce pulse frequency until triggering is reliable (2 shots)
 - Raise κ to 2.7 in increments of 0.2. At each shape perform the following:
 - apply low-frequency SPA waveform from κ = 2.1 case (1 shot)
 - increase frequency as much as possible while maintaining reliable triggering (2 shots)
- 4) Fueling optimization: minimize dn/dt (10 shots)
 - Start with reference discharge, and change CS in increments of 100 torr
 - Replace CS with shoulder
 - Shoulder pressure at ~ half CS
 - Shoulder puff at 100-130 ms (~10-30 ms later than CS)
 - Replace CS with SGI?
- 5) Vacuum shots with SPA pulses (~5 shots)
 - Restore best SPA waveforms from day, measure vacuum field structure
- Special machine requirements
 - 10 min shot cycle (no HeGDC), LITER sufficient to suppress ELMs
 - Several control shots will be taken through the day to check LITER rate is enough
 - RWM coils configured for n=3