XP914: NSTX and DIII–D Aspect Ratio Comparison of NTM Physics

- R.J. La Haye, General Atomics R.J. Buttery, UKAEA Culham S. Gerhardt, PPPL
- ELMing H-mode
 - ★ with sawteeth
- Cross-section similar
- Match q₉₅ ≈ 7
- Planned in 2009...
 - ★ 0.75D in NSTX (2009)
 correlated with 0.75D in XP915
 ★ 0.50D in DIII–D (2009)

Δ' and wmar are Key Parameters for NTMs

 B_{θ}^2

$$\frac{\tau_{R}}{r^{2}} \frac{dw}{dt} = \Delta' + \epsilon^{1/2} \frac{L_{q}}{L_{pe}} \beta_{\theta e} \begin{bmatrix} classical & \epsilon = r/R \\ tearing L_{q} \equiv q/(dq/dR) \end{bmatrix}$$

Transport threshold (R. Fitzpatrick 1995)

 $\tau D d M$

- \star transport along \vec{B} in island is fast \star inertial effects are important in compared to perpendicular
 - helical pressure perturbation washed out if perpendicular transport dominates

$$w_d \approx \left(\frac{L_s^2}{k_{\theta}^2} \frac{\chi_{\perp}}{\chi_{\parallel}}\right)^{1/4}$$

 $\begin{bmatrix} \frac{w}{w^2 + w_d^2} - \frac{w_{pol}^2}{w_d^3} \end{bmatrix} with curvature effects (GGJ) lumped into <math>\Delta$ and $w_{marg}^2 \equiv 3(w_d^2 + w_{pol}^2)$

transport polarization threshold threshold

- Polarization threshold (H.R. Wilson et al., 1996)
 - frame of E×B equilibrium flow
 - polarization currents induced by island propagation are stabilizing for $\omega(\omega_{\star i} - \omega) > 0$

 $W_{\text{pol}} \approx (L_q/L_p)^{1/2} \epsilon^{1/2} \rho_{\theta i}$

... small compared to saturated islands typically observed

m/n = 2/1 Rampdown Results in 2007/8 Obtained One Good Shot Each in NSTX and DIII-D

- NSTX 2007
 - ★ 2/1 locked first
 - fix is to add n = 3 EFC
 to "better" n = 1 EFC
- NSTX 2008
 - ★ no 2/1 excited with Li
 - fix is pre-Li
 - change shape, get frequent ELMs
 ... but stay in H on rampdown

- DIII-D 2008
 - ★ took 7 shots to develop target that worked
 - moved on to low q₉₅ JET

Appraising Saturated Marginal Island Width and Δ' in NSTX for m/n = 2/1 Neclassical Tearing Modes

Helically perturbed bootstrap current balanced by negative Δ' in MRE
 ★ Δ'r ≈ -ε_B^{1/2} (L_q/L_{pe}) (r/w_{sat}) β_{θe} ★ Δ'r ≈ -(2/3) ε_B^{1/2} (L_q/L_{pe}) (r/w_{marg}) β_{θe}
 ≈ -0.65 (0.083/0.158) (0.447/0.060) 0.22 ≈ -0.667*0.65 (0.128/0.081)(0.436/0.045)0.135 ≈ -0.6

Appraising Saturated and Marginal Island Width and Δ' in DIII–D for m/n = 2/1 Neclassical Tearing Modes

Preliminary Results on DIII–D and NSTX m/n = 2/1 NTM Island Marginal Stability Show Consistency

- Marginal island width a few times the ion banana width at q = 2
- $\Delta'(w_{marg})r \approx -1$ noting that w, flow shear and β are all "small"

- Followup Experiments Need
 - ★ more cases for reproducibility
 - ★ vary rotation at onset (also n=1 EFC)
 - ... and saturation?
 - ... probably need full co-rot at marginal point
 - to avoid locking
 - ★ input for ITPA 2009
 - ... MDC-4 aspect ratio
 - ... MDC-14 rot effects

XP914 Deliverables (with DIII–D Results)

- Scaling of marginal island width with aspect ratio
 ★ comparison to w_d and w_{pol} models
- Effective Δ' (w_{marg}) r_s including D_R effect if any
 - ★ comparison of marginal case to saturated case
 - effect of rotation (& it's shear) on saturated case

For Slowly Evolving "Saturated" Magnetic Islands, the LHS of the MRE is Zero

- Helically perturbed bootstrap current balanced by negative Δ'
 - ★ for islands sustained beyond threshold island width

 $0 \approx \Delta' + \epsilon^{1/2} \frac{L_q}{L_{pe}} \frac{\beta_{\theta e}}{w}$ (Note Δ' includes D_R term)

- The classical tearing stability index Δ' can be or have...
 - ★ linear function of island width (R. White, 1976)
 - ★ linear function of flow shear (R. Buttery, 2008)
 - ★ "pole" at ideal kink beta limit (D.P. Brennan, 2007)

$$\Delta' \mathbf{r} \approx \mathbf{C_0} - \mathbf{C_w} \mathbf{w} + \mathbf{C_2} \left(\frac{-d\omega_{\phi}}{dr} \right) \mathbf{L_s} \tau_{\mathsf{A}} + \mathbf{C_3} \left[1 - \left(\frac{\pi\beta}{\beta_{\mathsf{kink}}} \right) \operatorname{cot} \left(\frac{\pi\beta}{\beta_{\mathsf{kink}}} \right) \right]$$

017-09/RJL/jy

For "Marginal" Magnetic Islands, the LHS of the MRE is Also Zero

- Helically perturbed bootstrap current balanced by negative Δ'
 - ★ for islands at the "marginal" width, $\dot{w} \leq 0$ for all w

$$\begin{split} \mathbf{0} &\approx \Delta' + \epsilon^{1/2} \quad \frac{Lq}{Lpe} \frac{\beta_{\theta e}}{w_{marg}} \qquad \begin{bmatrix} w_{marg}^2 \\ w_{marg}^2 + w_d^2 \end{bmatrix} - \frac{w_{pol}^2}{w_{marg}^2} \\ &\cdots \mathbf{0} &\approx \Delta' + \frac{1}{2} \epsilon^{1/2} \frac{Lq}{Lpe} \frac{\beta_{\theta e}}{w_{marg}} \text{ for } w_{pol}^2 << w_d^2 \\ &- w_{marg} = w_d \\ &\cdots \mathbf{0} &\approx \Delta' + \frac{2}{3} \epsilon^{1/2} \frac{Lq}{Lpe} \frac{\beta_{\theta e}}{w_{marg}} \text{ for } w_d^2 << w_{pol}^2 \\ &- w_{marg} = \sqrt{3} w_{pol} \end{split}$$