

Supported by

Office of Science

XP-1006: Increasing the Non-Inductive Fraction in High-κ **NB Heated H-mode**

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt

J.M. Canik, D. Gates, J.E. Menard, V. Soukhanovskii, and the NSTX Research Team

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Summary

- XP-836, run in both 2008 & 2009, developed a nice high-kappa scenario with 65-70% non-inductive fraction.
 - 133964: 700 kA, 0.48 T, κ=2.6-2.7
- TRANSP "predicts" two ways to further increase f_{NI}:
 - Decrease Z_{eff} at fixed n_e .
 - Reduce I_P further.
- This XP:
 - Apply impurity reduction techniques to discharge 133964
 - Potentially reduce I_P , maybe down to I_P =500 kA
 - Time permitting, do some beam modulations and a κ scan.

2

Shot 133964 is the Template Shot For this XP.

TRANSP Simulations Of Two Scenarios to Increase f_{NI}

1) Decrease Z_{eff} at Fixed I_P , T_e , n_e

2) Decrease I_P and P_{inj} Rescale profiles with cutting edge transport model...guessing! $T_{e,i,new}(\rho)=C^{1/2}T_{e,i,new}(\rho)$ $n_{e,C,new}(\rho)=C^{1/2}n_{e,C,new}(\rho)$ $C=(I_{P,new}/I_{p,old}) \times (P_{inj,new}/P_{inj,old})^{1/3}$ Not self consistent, but approximately preserves H₉₈

TRANSP Shows that Reducing Z_{eff} Can Increase The Non-Inductive Fraction

- Fix:
 - Electron Density
 - Electron and ion temperatures
- Vary:
 - Z_{eff}, but with flat profile, assuming carbon is the impurity.
 - Ion density is adjusted to achieve quasi-neutrality.
- Decreasing Z_{eff}:
 - Decreases beam current drive.
 - Increases bootstrap current.
 - Raises q_{min}

$$\begin{split} & Z_{eff}{=}4: f_{BS}{=}40\%, \, f_{NB}{=}17\%, \, f_{NI}{=}62\%, \, \beta_{N}{=}4.3 \\ & Z_{eff}{=}3: \, f_{BS}{=}45\%, \, f_{NB}{=}16\%, \, f_{NI}{=}67\%, \, \beta_{N}{=}4.7 \\ & Z_{eff}{=}2: \, f_{BS}{=}55\%, \, f_{NB}{=}15\%, \, f_{NI}{=}76\%, \, \beta_{N}{=}5.0 \\ & Z_{eff}{=}1.5: \, f_{BS}{=}62\%, \, f_{NB}{=}13\%, \, f_{NI}{=}81\%, \, \beta_{N}{=}5.2 \\ & Z_{eff}{=}1.25: \, f_{BS}{=}66\%, \, f_{NB}{=}12\%, \, f_{NI}{=}84\%, \, \beta_{N}{=}5.3 \end{split}$$

TRANSP Shows That Reducing I_P May Also Increase f_{NI}

6 MW Input Power

In	f_nbcd (%)	f_bscd (%)	betaN	H98	ploss (MW)
700	15	39	5.1	1	1.3
650	16	43	5.14	1.02	1.5
600	17	46	5.14	1.06	1.8
550	18	51	5.15	1.09	2
500	18	55	5.14	1.13	2.3
450	18	62	5.1	1.19	2.7

• *H*₉₈ increases because density dependence of confinement was not properly considered in modifying profiles.

• Loss powers >2MW are probably unacceptable.

 Dropping to 4MW at 500 kA drops NBCD to ~13%, p_{loss}~1.5 MW
CX and BO loss are comparable.

• Presents an alternate scenario for increasing f_{NI} .

NSTX

Proposed Impurity Reduction Methods

Divertor Gas Puff ELM Pacing dr_{sep} optimization

Divertor Gas Puffing Has Helped Reduce Impurities

Reference Shots138768:2500 Torr t_{start} =150 msecduration=100 msec138769:3000 Torr t_{start} =300 msecduration=100 msecduration=100 msec

• Discharge is an 800 kA fiducial shape plasma.

• ~100 msec delay between command to fire and appearance of gas.

• *Many other combinations of plenum pressure, start times, and puff durations were applied.*

ELM Pacing Can Lower Radiated Power and Z_{eff}

- Reliable ELM triggering demonstrated in 2009.
 - Reductions in both P_{rad} and carbon with low-_ frequency triggering.

2.5

2.0

1.5

.0

0.5

0.0

 \cap

20

(MM)

С Б

60

- Low-frequency (20 Hz.) triggering had _ minimal performance degradation.
- New "AC Compensations" in the mode-ID algorithms should allow RWM feedback and DEFC during rapid n=1 pulses.
- Low-frequency triggering is likely optimal for this XP.

Carbon Inventory (10²⁰)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0

20

40

40

9

XP1005: ΔR_{SEP} change from -7mm to 0 reduces impurity confinement and/or generation and reduces C Z_{eff} by -1

•Like 2009 result, size of H-mode C impurity "ear" near t=0.3s influences late Z_{eff}

Aside: Might be Nice to Have Some NB Modulation Data in This Configuration.

- Can get some nice basic knowledge from NB modulations¹:
 - Initial slope of the neutron trace after beam turn-on is related to the prompt loss.
 - Longer time-scale evolution is related to the slowing down of high-energy particles.
 - Both can be compared to TRANSP simulations.
- Comparing time-scales eliminates the reliance on absolute calibration of the neutron detector.
- Present database is dominated by irregular modulations of Srcs. B & C from β_N control experiments.
- This target is a nice low I_P plasma for a systematic comparison with TRANSP.

Other Notes On XP

- Additional machine improvements to help this year:
 - "new" rtEFIT basis vectors to provide improve outer-gap regulation.
 - New RWM detection, the "miu" algorithm:
 - AC compensations will help reduce braking due to mis-identification of n=1 modes during transients.
 - Don't propose to use B_R feedback, unless it appears absolutely necessary.
 - β_N control system is qualified (but would prefer not to use it).
 - 133964 took all 6 MW, but if β_{N} increases with impurity reduction, then may need to back down of power.
- Primary NSTX conditions:
 - 6 MW NBI available
 - Dual LITER evaporators
 - Provision for Bay-E gas injection and SGI
 - Full profile diagnostics.