Princeton Plasma Physics Laboratory NSTX Machine Proposal				
Title: Optimization of β_N Contr	ol Gains			
OP-XMP-65	65 Revision: 0 Effective Expiration (2 yrs. unless		e Date: on Date: ss otherwise stipulated)	
Р	rocedure App	rova	ls	
Responsible author: Stefan Gerhar	dt			Date 3/11/2010
ATI (NSTX Physics Ops):				Date
RLM (NSTX Expt. Research Ops):				Date
Responsible Division: Experimen	ntal Research	Oper	rations	
Pro	cedure Requi	reme RLM	ents	
NSTX Work Permit		T-M	IOD (OP-A	D-03)
Independent Review	ES&H Review			
RESTRICTION	NS AND MINOF Approved by R	R MO LM	DIFICATI	IONS

REVIEWERS (designated by RLM)			
Organization/Position	<u>Name</u>	Signature	
ATI	D. Mueller		
Test Director			
Independent Reviewer			
NB system			
RF systems			
FCPC systems			
Diagnostics			

TRAINING (designated by RLM)				
Training required: No Yes Instructor				
Personnel (group, job title or individual name)	Read Only	Instruction	Hands- On	
RLM				

NSTX MACHINE PROPOSAL

TITLE: Optimization of β_N Control Gains	No. OP-XMP-65
AUTHORS: Gerhardt, et al.	DATE: 3/11/2010

1. Overview:

Beta control was first implemented in NSTX during the 2009 run, for a limited number of discharges. This system compares the present value of a request for the normalized β , to the value computed by rtEFIT, and then adjusts the NB power to reduce this difference to zero. The system performed well in the single instance of its use, but was not optimized. During the 2009 outage, some small changes woo the algorithm were made.

The "Beta Normal Feedback" (or bnf) algorithm for 2010 is based on the following PID equations.

$$e = \beta_{N, reqeast} - LPF(\beta_{N, RTEFIT}; \tau_{LPF})$$

$$P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int edt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$$

$$\overline{C}_{\beta_N} = 1000 \cdot \tau \cdot \frac{I_P V B_T}{200 \mu_0 a}$$

Shots from 2008 with large steps in the beam power have been used to select reasonable value of P & I for the controller, using the Ziegler-Nichols "Process Reaction Method". The purpose of the present XMP is to test that the values of P and I so determined are reasonable, and make any necessary further adjustments. It is not clear that derivative gain is actually useful, given the noise on the β_N signal (the subscript β_N on the gains is dropped for the remainder of this document).

The PID scheme noted above produces an analog power request, with an additional block of code required to convert this power request to source modulations. There is also a direct analog power request capability built into the algorithm: the PIC specifies the requested power as a function of time as an input waveform, and PCS determines the beam modulations to match this power (on average). This block of code will be tested as part of the XMP.

If this XMP is successfully completed, the β_N control will be available for use as a general tool.

Note that the algorithm also has contingency for β_T and W_{MHD} control. However, these controls will not be tested as part of the present XMP.

2. Justification:

NSTX is known to have large fluctuations in the normalized beta and confinement transients that can cause stability limits to be exceeded (followed by disruption). Both of these problems can hopefully be mitigated by using beta control. If this is indeed successful, a large number of experiments in the MHD and ASC groups will benefit. Use of this system is also important for the FY-10 MHD milestone on techniques for reducing disruptivity

3. Plan:

3.0: Off-line testing of the code against idl equivalent code.

The entire algorithm has been duplicated in idl, in order to provide a direct check of the outputs. The bnf algorithm will be run on the 2nd control computer during plasma operations, using the input data from the actual shot, and the outputs tested against those computed by the idl code.

3.1 Gain optimization

3.1.1 Load 800 kA, B_T =0.45, with the shape from the 2009 high-delta morning fiducial. Establish discharge to reasonable long pulse.

Note 1: Might be desirable to further lower I_p in order to stave off late rotating MHD. However, it is also desirable to maintain good absorption of source C, motivating the choice of 800 kA.

Note 2: If there remain mhd problems, raising the TF to 0.48 T may be beneficial. A reasonable waveform to reload is from 133964. Be sure to ramp down I_p earlier in this case.

3.1.2: Notify the NBOS that beta feedback will be used, and that they must plug in the cable on the back of the chassis.

3.1.3: Turn on beta-control, with a waveform similar to that in Fig 3.1. Use gains P=2 and I=0, with 20 msec on/off times. Check that:

____ Gains are correct (P=0.75, D=0, I=0)

_____ The batting order matrix is correct.

	1	2	3]	
Batting Order =	1	3	2	
	2	3	1	

____ The "Max Blocks Default" correct: [1,1,1]

_____ The source power waveforms have the same values as the power of the actual sources.

_____ That feedback is turned on at the correct time.

_____ That source A is NOT allowed the modulate, but that B & C are specified as used for feedback.

_____ That source A is asked to be on the entire time.

_____ That the feedback window has the correct timing.

_____ Beams enabled waveform set high

_____ Deadband for β_N feedback set to zero.

_____ Maximum number of blocks per source set to 18.

Target filter time constant ramping between 0.2 and 0.25 seconds, from $\tau=0$ to $\tau=0.01$ sec.

Shots:_____

Fig 1: Proposed waveform for the β_N request during gain optimization.

3.1.4: Increase the proportional and integral gains as in the table below. Only one shot per condition is required, and the three shots per row are contingency for failures.

Р	Ι	Shot #1	Shot #2	Shot #3
1	10			
1	20			
1	30			
2	20			

3.2 Test of more rapid modulations

3.2.1 Repeat optimal case with 15 msec on/off modulations. May need to modify batting order.

Shots:_____

3.3 Test of pre-programmed power ramps

3.2.1 Turn off feedback and replace it with an injected power request of (approximately) the following shape. PCS should calculate modulations to achieve, on average, this power level.

Shots:_____

Fig. 2: Proposed waveform for the P_{inj} request test.

4. Required machine, beam, ICRF and diagnostic capabilities:

Standard profile diagnostics and operations magnetics. RWM control would be helpful in order to increase the discharge reliability. LITER operation at ~150-200 mg/shot is also requested.

5. Sign off at run time:

5.1 Permission to Proceed:

Physics Operations Head

5.2 Documentation of results:

Documentation of the results completed, attached to proposal and sent to Ops. Center with copies to Cognizant Physicist and Head of Physics Operations.

Cognizant Physicist/Test Director

PHYSICS OPERATIONS REQUEST

TITLE: Optimization of β_N Control Gains AUTHORS: Gerhardt, et al.

No. **OP-XMP-65** DATE: **3/11/2010**

Brief description of the most important operational plasma conditions required:

1: I_P flat-top of >800 msec without mhd. This allows a long period for testing the step response of the system.

2: RWM control available. This should improve the shot-to-shot reliability at higher values of β_N .

Previous shot(s) which can be repeated:

Previous shot(s) which can be modified: Any 2009 fiducial-like shot, say 135643

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

I_{TF} (kA): 0.45-0.48 kG Flattop start/stop (s): Standard front end, go to max. I²t

I_P (MA): **700-800** Flattop start/stop (s): standard ramp rate, and use full OH and TF.

Configuration: 2009 high-κ, high-δ shape, which is slightly biased down DN.

rtEFIT controls: Isoflux, no need for S.P. control at high-δ.

 Outer gap (m): 10-15cm
 Inner gap (m): few cm
 Z position (m): 0<Z<-2 cm</th>

Elongation: ~ 2.3 Triangularity (U/L): 0.5/0.7 OSP radius (m): high- δ

Gas Species: D_2 Injector(s): Standard prefill + LFS + HFS (unless SGI becomes the working standard)

 NBI Species: D
 Voltage (kV)
 A: 90
 B: 90
 C: 90
 Duration (s): ~1-1.1 sec.

ICRF Power (MW): **0** Inter-strap phase (°): Duration (s):

CHI: Off Bank capacitance (mF):

LITERs: On Total deposition rate (mg/min): rate to get ~200 mg/shot

LLD: No Temperature (°C): Room Temperature

EFC/RWM coils: n=1 Feedback + n=3 correction Configuration: Odd

DIAGNOSTIC CHECKLIST

TITLE: Optimization of β_N Control Gains AUTHORS: Gerhardt, et al.

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		
Bolometer – midplane array	\checkmark	
CHERS – poloidal		
CHERS – toroidal	\checkmark	
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		\checkmark
Fast cameras – divertor/LLD	\checkmark	
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		
Gas puff imaging – divertor		
Gas puff imaging – midplane		
Hα camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – LLD		
Langmuir probes – bias tile		
Langmuir probes – RF ant.		
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors	\checkmark	
Mirnov coils – high f.	\checkmark	
Mirnov coils – poloidal array		
Mirnov coils – toroidal array	\checkmark	
Mirnov coils -3 -axis proto.		

No. **OP-XMP-65** DATE: **3/11/2010**

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE	\checkmark	
NPA – EllB scanning		
NPA – solid state		
Neutron detectors	\checkmark	
Plasma TV	\checkmark	
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – divertor		
Spectrometer – SPRED		
Spectrometer – VIPS		
Spectrometer – LOWEUS		
Spectrometer – XEUS		
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays		\checkmark
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang. pinhole camera		