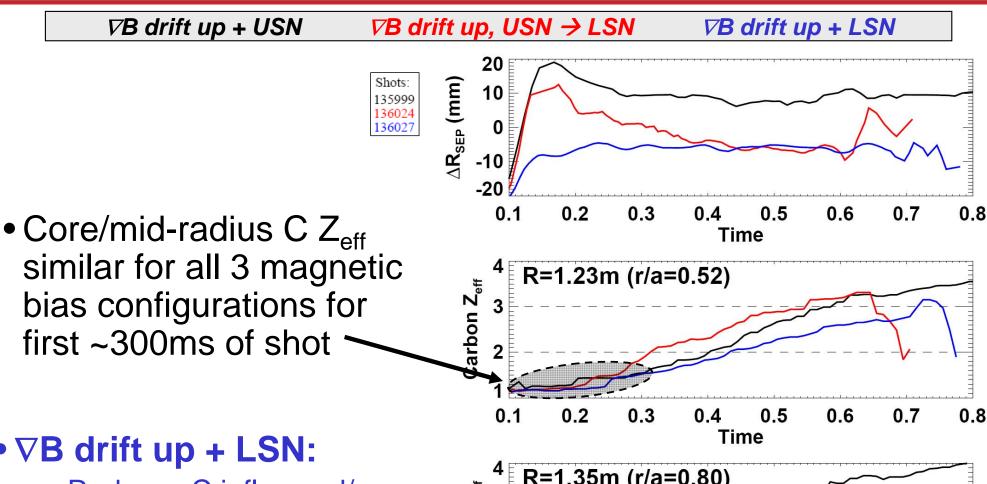
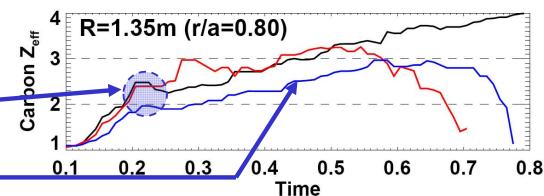

Princeton Plasma Physics Laboratory NSTX Experimental Proposal					
Title: Modifications to early discharge evolution to reduce impurity content					
OP-XP-1005	Revision:	(Approval de Expiratio	Effective Date: 3/22/2010 (Approval date unless otherwise stipulated) Expiration Date: 3/22/2012 (2 yrs. unless otherwise stipulated)		
	PROPOSAL AI	PPROVALS			
Responsible Author:	J. Menard, S. Gerhardt, J	. Canik, R. Maingi	Date 3/22/2010		
ATI – ET Group Leader: S. Gerhardt		Date			
RLM - Run Coordinat	or: E. Fredrickson		Date		
Responsible Division: Experimental Research Operations					
RESTRICTIONS or MINOR MODIFICATIONS (Approved by Experimental Research Operations)					

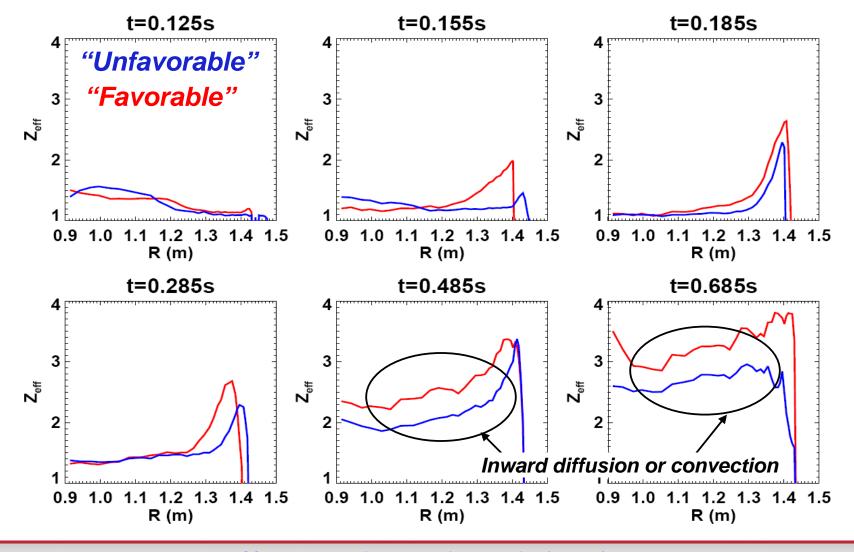

Particle/radiation evolution sensitive to ΔR_{SEP} evolution (shots shown purposely have no/few-small ELMs due to Li-conditioning)

"Unfavorable" ∇B drift up (away from X-point) with LSN has several favorable properties



Carbon Z_{eff} evolution sensitive to magnetic balance during ramp-up (immediately following early H-mode)

∇B drift up + LSN:


- Reduces C influx and/or confinement at top of pedestal immediately after early H-mode
- Lowers C Z_{eff} thereafter

"Unfavorable" direction reduces width and height of edge region where carbon is concentrated

 Question for XP: Can minimizing / flushing the C early keep it from diffusing into the core later in the discharge?

NSTX EXPERIMENTAL PROPOSAL

TITLE: Modifications to early discharge evolution to No. OP-XP-1005

reduce impurity content

AUTHORS: J. Menard, S. Gerhardt, J. Canik, R. Maingi DATE: 3/22/1010

1. Overview of planned experiment

The goal of the proposed experiment is to reduce the accumulation of low-Z and high-Z impurities in LITER/LLD ELM-free H-mode plasmas by reducing the impurity influx and confinement during the early H-mode and current ramp-up phase of the discharge. Variations in magnetic balance and early ELM triggering with 3D fields will be utilized to modify the early and late impurity content.

2. Theoretical/empirical justification

Previous operation with LITER led to favorable ELM-free H-mode operation with very high confinement. However, unfavorable confinement of C and metallic impurities has also been observed often leading to high radiation and/or $H\rightarrow L$ back-transitions after t=0.7-1s. In 2009, shifting the plasma vertically in the unfavorable ∇B drift direction during the current ramp-up phase (t=80-200ms) was observed to reduce the early and late carbon accumulation. Carbon density profile evolution data indicates that C is confined near the plasma edge until approximately t=0.4s, after which it is transported inward. Thus, reduction of the edge C density in the first 200-300ms using 3D fields for ELM triggering could also be effective for reducing the late C accumulation.

3. Experimental run plan

- A. Reproduce long-pulse scenario with LITER/LLD which is ELM-free and with strong C impurity accumulation in edge reference shot is 136027 (3 shots)
- B. Scan magnetic balance direction (DRSEP) before, during, after early H-mode, assess impact on early impurity accumulation to determine discharge phase most responsible for C accumulation:
 - a. During t=0.05-0.4s, scan DRSEP = -2, -1, 0, 1, 2 cm (constant in time) (9 shots)
 - i. Add early NBI power as needed to trigger/retain early H-mode during ramp-up
 - b. After above scan, for case with lowest C content, scan late DRSEP to assess changes in late C accumulation (DRSEP ramp between 0.3-0.5s) (6 shots)
- C. In conditions w/ minimized C content, add n=3 RMP pulses during ramp-up + early flat-top, i.e. t= 100-300ms (i.e. attempt to "clip" the density ears) (9 to18 shots)
 - a. Optimize amplitude, duty-factor, start-time to reduce C during ramp
 - i. Use 50Hz (20ms period), start 50ms before, during, after early H-mode, off at 0.3s
 - ii. 1, 1.5, 2kA and $\Delta t = 8$ ms to 4ms
 - b. Modify amplitude/duration to minimize early rotation damping and MHD instability

4. Required machine, NBI, RF, CHI and diagnostic capabilities

See Physics Operations Request

5. Planned analysis

MSE LRDFIT + TRANSP + NCLASS to model neoclassical impurity transport.

6. Planned publication of results

Results will be published in Nuclear Fusion, Phys. Plasmas, or possibly Phys. Rev. Lett. within 1 year.

PHYSICS OPERATIONS REQUEST

TITLE: Modifications to early discharge evolution to No. OP-XP-1005

reduce impurity content

AUTHORS: J. Menard, S. Gerhardt, J. Canik, R. Maingi DATE: 3/22/1010

Brief description of the most important operational plasma conditions required:

- DRSEP scans will be performed, so some discharge and/or control development/optimization will be required for this XP.
- Reproducible 800kA NBI discharge (or best available fiducial) with early H-mode.
- Implementation of early EF correction could be beneficial if early RMP is observed to reduce the early rotation leading to increased mode locking.

Previous shot(s) which can be repeated: 136027 or 135999 or fiducial

Previous shot(s) which can be modified: (see above)

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

 I_{TF} (kA): 53kA Flattop start/stop (s): -0.040/1.4s

I_P (MA): **0.8MA** Flattop start/stop (s): **0.15-1.2s**

Configuration: LSN, balanced DND, and USN will be utilized (DRSEP = -2 to 2cm)

Equilibrium Control: **Isoflux** (rtEFIT)

Outer gap (m): see reference Inner gap (m): Z position (m):

Elongation: Triangularity (U/L): OSP radius (m):

Gas Species: **D** Injector(s): **see reference shot**

NBI Species: D Voltage (kV) A: 90 B: 90 C: 70 Duration (s): 1.2s

ICRF Power (MW): **0** Phase between straps (°): Duration (s):

CHI: **Off** Bank capacitance (mF):

LITERs: On Total deposition rate (mg/min): 20mg/min

LLD: Temperature (°C): warm (if warm LLD provides reproducible pumping)

EFC coils: On Configuration: **Odd**

DIAGNOSTIC CHECKLIST

TITLE: Modifications to early discharge evolution to reduce impurity content No. OP-XP-1005

AUTHORS: J. Menard, S. Gerhardt, J. Canik, R. Maingi DATE: 3/22/2010

Note special diagnostic requirements in Sec. 4

Diagnostic Diagnostic	Need	Want
Beam Emission Spectroscopy		X
Bolometer – divertor	X	
Bolometer – midplane array		X
CHERS – poloidal		X
CHERS – toroidal	X	
Dust detector		X
Edge deposition monitors		X
Edge neutral density diag.		X
Edge pressure gauges		X
Edge rotation diagnostic		X
Fast cameras – divertor/LLD	X	
Fast ion D_alpha - FIDA		X
Fast lost ion probes - IFLIP		X
Fast lost ion probes - SFLIP		X
Filterscopes	X	
FIReTIP		X
Gas puff imaging – divertor		X
Gas puff imaging – midplane		X
Hα camera - 1D		X
High-k scattering		X
Infrared cameras		X
Interferometer - 1 mm		X
Langmuir probes – divertor		X
Langmuir probes – LLD		X
Langmuir probes – bias tile		X
Langmuir probes – RF ant.		X
Magnetics – B coils	X	
Magnetics – Diamagnetism		X
Magnetics – Flux loops	X	
Magnetics – Locked modes	X	
Magnetics – Rogowski coils	X	
Magnetics – Halo currents		X
Magnetics – RWM sensors	X	
Mirnov coils – high f.		X
Mirnov coils – poloidal array		X
Mirnov coils – toroidal array	X	
Mirnov coils – 3-axis proto.		X

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE		X
NPA – E B scanning		X
NPA – solid state		X
Neutron detectors	X	
Plasma TV	X	
Reflectometer – 65GHz		X
Reflectometer – correlation		X
Reflectometer – FM/CW		X
Reflectometer – fixed f		X
Reflectometer – SOL		X
RF edge probes		X
Spectrometer – divertor		X
Spectrometer – SPRED		X
Spectrometer – VIPS		X
Spectrometer – LOWEUS		X
Spectrometer – XEUS		X
SWIFT – 2D flow		X
Thomson scattering	X	
Ultrasoft X-ray – pol. arrays	X	
Ultrasoft X-rays – bicolor		X
Ultrasoft X-rays – TG spectr.		X
Visible bremsstrahlung det.		X
X-ray crystal spectrom H		X
X-ray crystal spectrom V		X
X-ray tang. pinhole camera		X