| Princeton Plasma Physics Laboratory<br>NSTX Experimental Proposal                                                |                                      |                                                                                 |                                       |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|--|--|
| Title: Test of β <sub>N</sub> -Control for Disruptivity Reduction                                                |                                      |                                                                                 |                                       |  |  |
| <b>OP-XP-1019</b> Revision: 0Effective Date:<br>(Approval date unless otherwise stipu<br>Expiration Date:<br>(2) |                                      | Date:<br>ate unless otherwise stipulated)<br>n Date:<br>s otherwise stipulated) |                                       |  |  |
|                                                                                                                  | PROPOSAL APPROV                      | ALS                                                                             | · · · · · · · · · · · · · · · · · · · |  |  |
| Responsible Author: Stefar<br>Maingi, J. Menard, S. Sabb                                                         | n Gerhard. J. M. Canik, D. Ga<br>agh | tes, R.                                                                         | Date                                  |  |  |
| ATI – ET Group Leader: S                                                                                         | . Sabbagh                            |                                                                                 | Date                                  |  |  |
| RLM - Run Coordinator: H                                                                                         | E. Fredrickson                       |                                                                                 | Date                                  |  |  |
| Responsible Division: Exp                                                                                        | erimental Research Operation         | 8                                                                               |                                       |  |  |
| RESTRI<br>(App                                                                                                   | CTIONS or MINOR MO                   | <b>DIFICAT</b><br>n Operations                                                  | IONS<br>s)                            |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |
|                                                                                                                  |                                      |                                                                                 |                                       |  |  |

# NSTX EXPERIMENTAL PROPOSAL

TITLE: β-Control for Disruptivity Reduction AUTHORS: Gerhardt, et al.

No. **OP-XP-1019** DATE:

## 1. Overview of planned experiment

The purpose of this experiment is to test the efficacy of the  $\beta_N$ -control system for 1) reducing disruptivity and 2) minimizing stored energy transients, both across confinement transitions and during otherwise steady-state conditions. Discharges that are unstable without  $\beta_N$  control will be run with  $\beta_N$  control on, to determine the ability of the control system to interdict ideal instabilities. The required time response of the  $\beta_N$  control system will be tested by scanning the time-constant of the causal low-pass filter on the rtEFIT  $\beta_N$  value.

## 2. Theoretical/ empirical justification

It is desirable to run an ST with the highest  $\beta_N$ , in order to maximize the non-inductive current fraction (for constant q); there is typically an upper bound on the achievable  $\beta_N$  due to instabilities such as the RWM. NSTX has historically run with feed-forward control of the injected power. This has been successful in achieving high-noninductive fractions and reliable scenarios. However, it has often been necessary to reduce the injected power, in order to ensure that confinement transients do not push  $\beta_N$  above stability limits. This problem can be especially pernicious if those confinement transients are sustained as improved confinement regimes. It is hoped that feedback control of the injected power, in order to achieve a pre-programmed value of the requested  $\beta_{N,}$ , will allow more reliability operation near  $\beta_N$  limits and reduced disruptivity across confinement transients.

## 3. Experimental run plan

#### 3.1 Development of target.

3.1.1 Target is high- $\kappa$ , high- $\delta$  shape used in the 2009 fiducial discharge. Likely use  $I_p=800$  kA and  $B_T=0.42$  T,  $P_{inj}=6$ MW. These parameters are historically prone to disruption. (2 shots)

Shot Numbers \_\_\_\_\_

3.1.2 Reduce power to 4 MW. Add square n=3 pulses at t=0.4, 3 kA amplitude, 3 msec long. If the pulse does not trigger a transition to Enhanced Pedestal H-mode (EP H-mode), then i) move pulse to t=0.5 seconds or ii) increase current to 900 kA. If improved confinement regime occurs, plasma will likely disrupt. If no transition occurs, then discharge should be stable. (2 shots)

Shot Numbers \_\_\_\_\_ \_\_\_\_

*Decision Point #1:* If step 3.1.2 generated a transition to an enhanced confinement regime, the go on the "EPH Path" steps below using the shot with the transition as a reference. Otherwise use these as 4MW and 6 MW pre-programmed power references cases for the "HM Path".

#### 3.2 EPH Path: Scan of $\beta_N$ .

IC 3.2.1: Turn on  $\beta_N$  control, with a requested value equal to the value of  $\beta_N$  before the IC transition. Test that the beam power is indeed reduced after the transition. (2 shots)

Shot Numbers \_\_\_\_\_ \_\_\_\_

IC 3.2.2: Because gains scale like  $(1/\text{confinement})^2$  for a similar response of the  $\beta_N$  control system, reduce proportional and integral gains during period after transition if necessary. (0-2 shots)

Shot Numbers \_\_\_\_\_ \_\_\_\_

IC 3.2.3: Increase the requested  $\beta_N$  in units of 0.5 during the IC phase until disruption occurs. Bracket the stability limit. (5 shots)

In all cases, leave the early part of the shot alone in order to ensure the regime transition is repeatable.

| Shot # | $\beta_{ m N,req}$ | Comment |
|--------|--------------------|---------|
|        |                    |         |
|        |                    |         |
|        |                    |         |
|        |                    |         |
|        |                    |         |
|        |                    |         |
|        |                    |         |

#### 3.2 HM (=H-Mode) Path: Scan of $\beta_N$ .

HM 3.2.1: Note the  $\beta_N$  level of the disruptive case at 6 MW ( $\beta_{N,6MW}$ ) and the  $\beta_N$  level of the non-disruptive case at 4MW ( $\beta_{N,4MW}$ ). Turn on  $\beta_N$  control with a request of  $\beta_{N,req} = (\beta_{N,6MW} + \beta_{N,4MW})/2$ . (2 shots)

Shot Numbers \_\_\_\_\_ \_\_\_\_ \_\_\_\_

| Shot # | Average Power | $\beta_{\rm N,req}$ | typical $\beta_N$ | Disruption |
|--------|---------------|---------------------|-------------------|------------|
|        | 6 MW          | NA                  |                   |            |
|        | 4MW           | NA                  |                   |            |
|        |               |                     |                   |            |
|        |               |                     |                   |            |
|        |               |                     |                   |            |
|        |               |                     |                   |            |
|        |               |                     |                   |            |
|        |               |                     |                   |            |
|        |               |                     |                   |            |

HM 3.2.2: Use a bisection like approach to determine the  $\beta_N$  request that the plasma can tolerate. (5 shots)

#### 3.3 Scan of filter time constant.

3.3.1 Take a typical stable case from 3.2 and repeat it. Then repeat with a low-pass filter time constant on the  $\beta_N$  request of 50 msec. Increase or decrease this value to find the stable limit. (5 shots)

| Shot | $\tau_{\text{LPF}} (\text{msec})$ | $\beta_{N,req}$ | Comment |
|------|-----------------------------------|-----------------|---------|
|      |                                   |                 |         |
|      |                                   |                 |         |
|      |                                   |                 |         |
|      |                                   |                 |         |
|      |                                   |                 |         |
|      |                                   |                 |         |
|      |                                   |                 |         |

## 4. Required machine, NBI, RF, CHI and diagnostic capabilities

XMP-65 should have been completed before this XP is run.

All profile diagnostics are required: MSE, CHERS, MPTS, Bolometry.

6 MW injection must be available, but RF & CHI are not required.

### 5. Planned analysis

Equilibrium reconstruction with EFIT and LRDFIT. Likely TRANSP runs for interesting cases. Ideal stability calculations for low-n global MHD may also be useful. Devoted pedestal analysis my also be run if the "EPH Path" is followed, as these shots would be interesting beyond simply global-MHD.

### 6. Planned publication of results

Successful results (i.e.  $\beta_N$  control leading to improved performance) would make a nice Nuclear Fusion paper. Would get shown by multiple people at IAEA and APS. Also contributes strongly to the FY-10 MHD milestone on disruptivity reduction.

## PHYSICS OPERATIONS REQUEST

TITLE: β-Control for Disruptivity Reduction AUTHORS: Gerhardt, et al.

No. **OP-XP-1019** DATE:

Brief description of the most important operational plasma conditions required: 1: The beta-control algorithm must have been successfully tested, as demonstrated by successful completion of XMP-65. 2: 6 MW of NBI power must be available. 3: Profile diagnostics and RWM control must all be available. **Previous shot(s) which can be repeated:** This XP will likely use the 2009 high-kappa fiducial shape, though with different vales of  $I_P$  and (maybe)  $B_T$ . **Machine conditions** (specify ranges as appropriate, strike out inapplicable cases) I<sub>TF</sub> (kA): **0.4-0.45** T Flattop start/stop (s): To the I<sup>2</sup>t limit of the coil. Flattop start/stop (s): Longest consistent with getting  $f_{dia}$ I<sub>P</sub> (MA): **700-800 kA** Configuration: **DN** (maybe slightly biased down) Equilibrium Control: Isoflux (rtEFIT) Outer gap (m): **10-15 cm** Z position (m): Inner gap (m): Elongation: Triangularity (U/L): OSP radius (m): Gas Species: Injector(s): NBI Species: D Voltage (kV) A: 90 **C:** 90 **B: 90** Duration (s):  $\sim 1.3$ **ICRF** Power (MW): **0** Phase between straps (°): **N. A.** Duration (s): **0** CHI: Off Bank capacitance (mF): LITERs: On Total deposition rate (mg/min): **TBD**, likely 200 mg/shot Temperature (°C): LLD: Probably no. EFC coils: On Configuration: Odd

### DIAGNOSTIC CHECKLIST

# TITLE: β-Control for Disruptivity Reduction AUTHORS: Gerhardt, et al.

# No. **OP-XP-1019** DATE:

| Note  | special | diagnost | ic reauir   | ements in   | Sec. 4 |
|-------|---------|----------|-------------|-------------|--------|
| 11010 | speciel | anagnosi | ie i equiti | ententis th |        |

| Diagnostic                    | Need         | Want |
|-------------------------------|--------------|------|
| Beam Emission Spectroscopy    |              |      |
| Bolometer – divertor          |              |      |
| Bolometer – midplane array    |              |      |
| CHERS – poloidal              |              |      |
| CHERS – toroidal              |              |      |
| Dust detector                 |              |      |
| Edge deposition monitors      |              |      |
| Edge neutral density diag.    |              |      |
| Edge pressure gauges          |              |      |
| Edge rotation diagnostic      |              |      |
| Fast cameras – divertor/LLD   |              |      |
| Fast ion D_alpha - FIDA       |              |      |
| Fast lost ion probes - IFLIP  |              |      |
| Fast lost ion probes - SFLIP  |              |      |
| Filterscopes                  |              |      |
| FIReTIP                       |              |      |
| Gas puff imaging – divertor   |              |      |
| Gas puff imaging – midplane   |              |      |
| Hα camera - 1D                |              |      |
| High-k scattering             |              |      |
| Infrared cameras              |              |      |
| Interferometer - 1 mm         |              |      |
| Langmuir probes – divertor    |              |      |
| Langmuir probes – LLD         |              |      |
| Langmuir probes – bias tile   |              |      |
| Langmuir probes – RF ant.     |              |      |
| Magnetics – B coils           | $\checkmark$ |      |
| Magnetics – Diamagnetism      |              |      |
| Magnetics – Flux loops        | $\checkmark$ |      |
| Magnetics – Locked modes      |              |      |
| Magnetics – Rogowski coils    | $\checkmark$ |      |
| Magnetics – Halo currents     |              |      |
| Magnetics – RWM sensors       |              |      |
| Mirnov coils – high f.        |              |      |
| Mirnov coils – poloidal array |              |      |
| Mirnov coils – toroidal array |              |      |
| Mirnov coils – 3-axis proto.  |              |      |

| Note specia | l diagnostic | requirements | in Sec. | 4 |
|-------------|--------------|--------------|---------|---|
|-------------|--------------|--------------|---------|---|

| Diagnostic                    | Need | Want |
|-------------------------------|------|------|
| MSE                           |      |      |
| NPA – EllB scanning           |      |      |
| NPA – solid state             |      |      |
| Neutron detectors             |      |      |
| Plasma TV                     |      |      |
| Reflectometer – 65GHz         |      |      |
| Reflectometer – correlation   |      |      |
| Reflectometer – FM/CW         |      |      |
| Reflectometer – fixed f       |      |      |
| Reflectometer – SOL           |      |      |
| RF edge probes                |      |      |
| Spectrometer – divertor       |      |      |
| Spectrometer – SPRED          |      |      |
| Spectrometer – VIPS           |      |      |
| Spectrometer – LOWEUS         |      |      |
| Spectrometer – XEUS           |      |      |
| SWIFT – 2D flow               |      |      |
| Thomson scattering            |      |      |
| Ultrasoft X-ray – pol. arrays |      |      |
| Ultrasoft X-rays – bicolor    |      |      |
| Ultrasoft X-rays – TG spectr. |      |      |
| Visible bremsstrahlung det.   |      |      |
| X-ray crystal spectrom H      |      |      |
| X-ray crystal spectrom V      |      |      |
| X-ray tang. pinhole camera    |      |      |