

Supported by

XP1046: Effect of externally applied 3-D fields on divertor profiles

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J-W. Ahn¹, J.M. Canik¹, T.K. Gray¹, A. Loarte², R. Maingi¹, A.G. McLean¹, J.-K. Park³, O. Schmidtz⁴, and V. Soukhanovskii⁵ ¹ORNL, ²ITER, ³PPPL, ⁴IPP-Julich, ⁵LLNL

> NSTX BSG Review PPPL, June 29, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Motivation

- Small external magnetic perturbations used for ELM control

 ELM suppression (DIII-D) and mitigation (JET)
 ELM triggering (NSTX, MAST)
- The 3-D nature of RMP application can cause toroidally asymmetric heat and particle deposition
- Understanding of heat and particle transport in the presence of 3-D fields, both externally applied and/or internally arisen, is important for divertor performance projections
- The proposed use of 3-D field triggered ELMs in a controlled manner requires detailed understanding of heat and particle deposition pattern during the ELMs

Strike point splitting is predicted by 3-D field application

- J-W. Ahn, Nucl. Fusion (2010), 045010
- Field line tracing uses superposition of vacuum n=3 fields and 2-D equilibrium fields

'Augmented strike point splitting' by **3-D field application**

(III) NSTX

Distribution of lobe locations agrees well between measurement and vacuum field line tracing

- Measured heat flux profile (red) overlaid with vacuum field line tracing plot
- Dense regions in the puncture plot correspond to long connection length lobes, therefore expected to have higher heat and particle fluxes

J-W. Ahn, Nucl. Fusion (2010), 045010

Heat flux profile from ELMs triggered by n=3 fields appears to follow imposed field structure

- Striations in the heat flux profile appear in the same locations as was before the ELM
- 3-D field triggered ELMs appear to be phase-locked to the externally applied perturbation structure

Issues to be investigated

 Data in FY09 were obtained from limited plasma conditions, *ie* ν^{*}_e~1, q95~11, β_N~4. Therefore, conclusions are also valid only for those conditions.

 \rightarrow We need a wide parameter scan to see how divertor profiles are affected by the plasma conditions

- Collisionality is a parameter expected to play an important role in the transport processes, separate from field line tracing
 - → In DIII-D, no footprint striation was observed for $v_e^* < 0.5$
 - \rightarrow ITER is interested in high density/collisionality H-mode
 - → Target range of scan: $0.2 \le v_e^* \le 5$
 - \rightarrow Comparison of data with field line tracing
- At v^{*}_e~1, no change in total heat flux was observed
 → Change in total heat and particle fluxes at different v^{*}_e?

Issues to be investigated - continued

 q95 is a parameter playing an important role in determining locations of resonant surfaces

 \rightarrow q95 scan is a good tool to investigate effect of resonant contributions to the divertor profile modification

→ Also, narrow q95 windows discovered for ELM suppression in DIII-D. What about NSTX? (focus of J.-K. Park's XP-1048)

→ Target range of scan: $7 \le q95 \le 13$

- Only n=3 perturbation data have been taken so far (I_{OH}=0 at time of 3-D field application, no intrinsic n=1 field).
 → Apply n=1 perturbation to see the effect on divertor profiles
- Possibility of toroidal hot spot with the imposed 3-D fields
 → n=3 not possible to rotate
 - \rightarrow Application of n=1 AC, freq=25-30Hz, I_{3D}=800A

Shot plan

Reference shot:

135185 (Ip=800kA, I_{3D} =-750A, 3-D field applied at t=400ms (I_{OH} ~0), ELMs were triggered later during the 3-D field application

• Collisionality scan:

3 density levels x two NBI powers (P_{NBI}=3, 6MW)

 \rightarrow total of 6 collisionality levels (6 shots)

q95 scan:

Bt=0.45T, Ip=700, 950, 1200kA (3 shots)

- Collisionality scan at Ip=1200kA (6 shots) narrower inter-ELM SOL width, larger ELM sizes
- n=1 AC:
 - \rightarrow Maximum I_{3D,peak}=800A to avoid locking, freq=25-30Hz
 - \rightarrow Collisionality + q95 scan (9 shots)

Total of 21 shots needed