Effects of the Triangularity on the Pedestal Structure at fixed X-point height in ELMy Discharges

A. Diallo, A. Sontag, R. Maingi,
S. Gerhart, and E. Kolemen

Pedestal Structure and Stability are Tightly Coupled through the Plasma Shape

- XP 1044: Experiments of pedestal structure scaling have been performed to show:
- normalized poloidal beta scales with current consistent ITER98 scaling
- no clear scaling of the pedestal height with Bt.
- pedestal height does not ALWAYS saturate before the ELM crash
- what is the effect of plasma shaping on the pedestal structure?
- The effect of plasma shaping is well known to be a key ingredient in MHD stability. Its role in setting the pedestal width and height has yet to be quantified.
- In large aspect ratio tokamak, the pedestal pressure limit increases with triangularity
- Data from XP942 confirms the increase of the pedestal height with average triangularity
- Extend Sontag developed discharges (XP942) to add a crucial component the X-point control and document the pedestal structure.

XP Goal: Scan both bottom and average triangularity and quantify their effects on the pedestal structure

- This XP targets FY 2011 Joint research Milestone on pedestal physics
- Perform systematic scan of the bottom triangularity at fixed X -point height to quantify the dependence of the triangularity on the pedestal structure
- Questions this XP might address:
- How does the pedestal height and width depend on the bottom triangularity?
- Is the pedestal buildup during an ELM cycle depending on the shaping?
- Which of the two knobs (bottom or average triangularity) has the dominant effect on the pedestal structure?
- Can we determine the range of values in triangularity enabling to transition from the peeling to peelingballooning dominated drive in the stability curve?
- What are the fluctuation characteristics during an ELM cycle for high and low triangularity?

2 Sessions-Run Plan (in order of priority)

- Session 1: Shape development (in ELM free case)
- Reference 135155 discharge at low triangularity (0.3-0.4)
[1/2 day]
[5 shots]
- $\mathrm{Ip}=800 \mathrm{kA}, \mathrm{Bt}=4.5 \mathrm{kG}$
- Biased down: drsep $=-0.5 \mathrm{~cm}$
- Keep top triangularity between 0.3 and 0.5
- Include the X-point height and strike point controls
- Establish a high triangularity discharge(0.7-0.8)
- Keep the same top triangularity as above
- Establish a medium bottom triangularity(0.5-0.6)
- If time permits, vary the top and bottom triangularity independently keeping the average triangularity constant at 0.8-1
- Set bottom triangularity at minimum achieved earlier (0.3-0.4) and top triangularity at 0.5-0.6
- Session 2: Pedestal structure documentation
- Note that, once the discharges are established, we might need to tweak the gas and beam timings to obtain regular ELMy discharges.
- For each shape by stepping the beam power from 5MW to 3 MW
[2x3 shots]
- Document the effect of toroidal velocity on the pedestal structure by applying low/ gentle levels of $n=3$ braking (300A \& 600A).
[2×3 shots]

Target Discharges X-point height and Lower Triangularity

- Shot 135155 shows fairly constant X-point height and lower triangularity.

Diagnostic Requirements

- Need
- MPTS
- CHERS
- Filterscope
- MSE
- USXR (edge channels)
- EFIT
- Desired
- GPI
- Reflectometry
- Tangential SXR Edge channels

