Princeton Plasma Physics Laboratory NSTX Experimental Proposal

Title: Radiative divertor with impurity seeding and lithium coatings in NSTX

Revision:

Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)

PROPOSAL APPROVALS

Responsible Author: V. A. SoukhanovskiiDate 1 September 2010ATI - ET Group Leader: R. MaingiDateRLM - Run Coordinator: E. FredricksonDate

Responsible Division: Experimental Research Operations

RESTRICTIONS or MINOR MODIFICATIONS

(Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE: Radiative divertor with impurity seeding in NSTXNo. **OP-XP-1050**AUTHORS: V. A. Soukhanovskii et al.DATE:

1. Overview of planned experiment

The goal of this experiment is to study a steady-state partially detached divertor (PDD) regime with impurity seeding. This will be done in NBI-heated H-mode discharges in a higher-end elongation / triangularity lower single null (LSN) and double null (DN) shapes with $\kappa=2.3-2.4$ and $\delta=0.5-0.7$. Gaseous impurity (e.g., deuterated methane CD₄) will be injected in increased quantities to increase divertor P_{rad} to obtain the outer target detachment. Divertor measurements, such as the D_{α}, D_{β}, D_{γ} brightness profiles, heat flux profiles from two-color IR cameras, core and divertor radiated power, divertor Langmuir probe I_{sat} and neutral pressure will be measured and analyzed for signs of heat flux reduction, recombination, power and momentum loss, and an X-point MARFE formation. The goal is to determine the injected gas quantity necessary to establish PDD conditions, simultaneously retaining good core plasma quantities (MHD, confinement, impurity level). Another goal is to study the operational space of the impurity-seeded radiative divertor, changing input power and divertor pumping (with LITERs or LLD).

2. Theoretical/ empirical justification

Presently, divertor geometry and radiative (detached) divertors are considered candidate techniques for steady-state mitigation of divertor heat flux and erosion of divertor material in NSTX and NSTX-U. Recent experiments conducted with a high flux expansion divertor demonstrated significant divertor peak heat flux reduction and access to partial detachment using additional D₂ injection at $\Gamma < 9.8 \times 10^{21} \text{ s}^{-1}$ and divertor radiation from intrinsic impurities (lithium helium, carbon) [1, 2]. The proposed experiment will attempt to reproduce these results using extrinsic impurity seeding in LSN and DN configurations.

3. Experimental run plan

Part 1. Heat flux reduction and detachment in high elongation / triangularity LSN plasmas with impurity seeding (10-15 shots)

- 1. Setup a HFS-fueled discharge with elongation $\kappa = 2.2 2.4$, triangularity $\delta < 0.75$, and -5>drsep>-10 mm with highest possible I_p (0.9-1.2 MA) and highest NBI power (5-6 MW) for highest divertor peak heat flux (2-3 shots)
 - Wall conditions should permit reproducible H-mode access with 2 NBI sources
 - rtEFIT control will be used
 - Use 140560 (0.8 MA / 4 kG / 6 MW) as a template shot, or some more recent 1 MA shot
 - Configuration will be adjusted to obtain $drsep \sim -1.0$ cm, outer gap ~ 10 cm, $R_{OSP} \sim 35 45$ cm
- 2. Perform a scan of gas injection rate and/or times (5 shots).
 - Inject CD₄ from Bay E lower divertor gas injector in increasing quantities until partial detachment is observed. If the gas injector plenum pressure is 1000-2000 Torr, a pulse of 10 ms and higher would contain about 5-10 % of the total carbon discharge inventory.

- Use Supersonic gas injector (SGI) instead of divertor gas injector to study dependence on gas poloidal location and carbon transport
- As a backup option, may use Branch 5 injector and the PZV4/4a valve to inject gas in the outer SOL close to outer strike point
- 3. Overview of desirable data
 - Obtain data in a range of NBI input powers (2-5 MW)
 - Obtain data in a range of LITER rates (100-400 mg/shot)
 - Use best PDD discharge from above with doubled LITER rate as a starting point
 - In one high density discharge, turn off NBI at the time when n_e is high (> 5 x 10¹⁹ m⁻³) to obtain high density low input power condition for ~ 200 ms
 - Use GPI diagnostic to obtain edge turbulence data in some shots (pitch angle permitting)
 - Optional, time permitting: Obtain PDD with D₂ gas injection at similar discharge parameters for comparison

Part 2. Heat flux reduction and detachment in high elongation / triangularity DN plasmas (10 shots)

Repeat the best gas injection scenario in DN shots. Optional, time permitting - scan down gas injection rate using plenum pressure increments of 100-150 Torr.

4. Required machine, NBI, RF, CHI and diagnostic capabilities

NBI, good wall conditions, LITER, diagnostic set as in attachment

5. Planned analysis

EFIT, LRDFIT, TRANSP, UEDGE

6. Planned publication of results

Results will be presented in upcoming fusion meetings and major refereed publications.

References

[1] SOUKHANOVSKII, V. A. et al., Phys. Plasmas 16 (2009) 022501.

[2] SOUKHANOVSKII, V. A. et al., Nucl. Fusion 49 (2009) 095025.

PHYSICS OPERATIONS REQUEST

TITLE: Radiative divertor with impurity seeding in NSTX AUTHORS: V. A. Soukhanovskii et al.

No. **OP-XP-1050** DATE:

Brief description of the most important operational plasma conditions required:					
NBI, LITER, PCS, Bay E div	NBI, LITER, PCS, Bay E divertor gas injector				
1) Demonstrate impurity-seed	ded radiative divertor				
2) Study divertor radiated power, peak divertor heat flux and core confinement and performance as functions of SOL power, impurity seeding rate and lithium deposition rate					
Previous shot(s) which a	can be repeated:	140560			
Previous shot(s) which a	can be modified:	140560			
Machine conditions (sp	pecify ranges as app	propriate, strike	e out inap	oplicable cases)	
I _{TF} (kA): 56.2	Flattop start/stop	(s):			
I_{p} (MA): 0.9	Flattop start/stop	(s):			
Configuration: LSN					
Equilibrium Control: Ou	ter gap / Isoflux (r	tEFIT) / Strike	-point co	ontrol (rtEFIT)	
Outer gap (m): 10 cm	Inner gap (m): Z position (m): 0.00		ion (m): 0.00		
Elongation:	Triangularity (U/L):	OSP radius (m): 0.4-0.55		
Gas Species: D2	Injector(s): HI	S at 1600-190	0 Torr, 2	, 3, Bay E divertor	
NBI Species: D Voltage	e(kV) A:90	B: 90 C	: 65	Duration (s):	
ICRF Power (MW): 0	Phase betwee	en straps (°):		Duration (s):	
CHI: Off Ba	ink capacitance (mI	F):			
LITERs: On	Total deposition ra	ate (mg/min): 1	0-40		
LLD: Temperature (°C): room, no heating applied					
EFC coils: On	Configuration: Ex	ven / Other			

DIAGNOSTIC CHECKLIST

TITLE: Radiative divertor with impurity seeding AUTHORS: V.A. Soukhanovskii et al.

No. **OP-XP-1050** DATE:

Note special diagnostic re	equirements in Sec. 4
----------------------------	-----------------------

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		\checkmark
Bolometer – midplane array		
CHERS – poloidal		
CHERS – toroidal	\checkmark	
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		\checkmark
Edge pressure gauges	\checkmark	
Edge rotation diagnostic		\checkmark
Fast cameras – divertor/LLD		\checkmark
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging – divertor		\checkmark
Gas puff imaging – midplane		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		\checkmark
Infrared cameras	\checkmark	
Interferometer - 1 mm		
Langmuir probes – divertor		\checkmark
Langmuir probes – LLD		\checkmark
Langmuir probes – bias tile		\checkmark
Langmuir probes – RF ant.		
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors		
Mirnov coils – high f.		
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		

Note special	diagnostic	requirements	in	Sec.	4
1	0	1			

Diagnostic	Need	Want
MSE	\checkmark	
NPA – EllB scanning		
NPA – solid state		
Neutron detectors	\checkmark	
Plasma TV	\checkmark	
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		\checkmark
RF edge probes		
Spectrometer – divertor		\checkmark
Spectrometer – SPRED	\checkmark	
Spectrometer – VIPS	\checkmark	
Spectrometer – LOWEUS		\checkmark
Spectrometer – XEUS		\checkmark
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays	\checkmark	
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		\checkmark
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang. pinhole camera		