

College W&M Colorado Sch Mines

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

l odestar

W UNIVERSITY of WASHINGTON

> XP 1045: "Snowflake" divertor characterization in NSTX

Supported by

V. A. Soukhanovskii, LLNL and NSTX Team

> Boundary Physics TSG Meeting Princeton, NJ 30 July 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Office of

U.S. DEPARTMENT OF

ENERGY Science

"Snowflake" divertor configuration may be a game changer for divertor tokamaks

- "Snowflake" divertor (SFD) configuration proposed and studied theoretically by D. D. Ryutov (LLNL)
 - Phys. Plasmas 14, 064502 (2007)
 - Phys. Plasmas, 15, 092501 (2008)
 - 34th EPS Conference on Plasma Phys. Warsaw, 2 6 July 2007 ECA Vol.31F, D-1.002 (2007)
 - Paper IC/P4-8 at IAEA FEC 2008
- SFD is obtained by creating a second-order poloidal null in the (lower) divertor with existing divertor coils
- Two cases SFD-plus and SFD-minus
- Predicted properties
 - Large flux expansion (*B_p*/*B* small) and long parallel connection length
 - Null-pt flux tube squeezing barrier for turbulence
 - Possibility of ELM control (increased edge magn. shear)
 - Enhanced null-point *grad B* drift (C. S. Chang's X-pt transport)

SFD-plus and SFD-minus

NSTX is making a contribution to the novel divertor geometry development for future devices

- XP 924 (2009) Initial "snowflake" divertor studies in NSTX (0.5 day)
 - Obtained "snowflake"-like configurations for 100's ms
 - Magnetic configuration very large flux expansion, longest connection length, largest divertor volume
 - Detachment of divertor OSP
 - Large heat flux reduction
 - Increased divertor P_{rad} and recombination
 - Reduced core P_{rad} and carbon density
 - No core confinement degradation
- NSTX is making a unique contribution to divertor studies among medium and large high-power tokamaks
 - TCV has been experimenting with "snowflake" divertor
 - "Snowflake" configuration is a candidate for heat flux mitigation in NSTX-U

XP 1045 to continue "snowflake" divertor studies

- "Snowflake" divertor configuration will be obtained as in 2009 by using PCS OSP control and two div. coils (PF1A and PF2L)
 - Candidate FY2010 shot 137983 (suggested by E. Kolemen)
 - Separately, will also attempt to obtain SFD-minus using PF1B
- Goals for XP1045 this year:
 - SOL and divertor transport and turbulence
 - Measure heat flux profiles in abs. units w / two-color IR camera
 - Obtain data in a range of P_{SOL} (P_{NBI} = 2-5 MW, I_p = 0.8-1.2 MA)
 - Synergy with LLD pumping (scan LITER rate?)
 - Comparison of midplane and divertor turbulence (GPI + fast vis. cam.)
 - Detachment characteristics (probes, new spectroscopy)
 - Impurity sources and core density, P_{rad}
 - Pedestal stability

Results from XP 924

Results from XP 924

Lawrence Livermore

National Laboratory

