Princeton Plasma Physics Laboratory NSTX Experimental Proposal

Title: LLD Characterization

OP-XP-1000

Revision: 0

Effective Date: 3/22/2010

Date

Date

(Approval date unless otherwise stipulated)

Expiration Date: 3/22/2012 (2 yrs. unless otherwise stipulated)

PROPOSAL APPROVALS

Responsible Author: H. W. Kugel

Date

ATI – ET Group Leader: C. H. Skinner

RLM - Run Coordinator: E. D. Fredrickson (S. A. Sabbagh)

Responsible Division: Experimental Research Operations

RESTRICTIONS or MINOR MODIFICATIONS

(Approved by Experimental Research Operations)

Prerequisite for XP1000:

Complete XMP064, "NSTX Start-up Commissioning and Evaluation Using Lithium Coating Only"

- After ISTP-001 and NB Alignment are completed, apply 2hrs HeGDC.
 Record RGA spectra before, during, and after this HeGDC.
- With the LLD at room temperature (TBD) perform a LITER deposition at 20 mg/min for at least 600min (10hrs). This will deposit 12g total of which 0.84g is incident on the LLD (7% of 12g) yielding a Li coating thickness over its estimated physical area (8x its geometric area) of ~200nm ([0.84g/(0.534g/cm³ x 8 x 9.3 x 10³cm³)] x107nm/cm). Record initial and final RGA spectra.
- Complete the startup checklist.
- Continue to perform shots until the required reference discharges achieve research grade, defined as;

4MW NBI, 600ms I_p flattop, $t_e \ge 50$ ms, Se ≥ 200 kJ

XP1000 Has Parts: A and B

- Part A: Inner Divertor, R = 0.5m, 0.63m.
- Part B: Outer divertor, R=0.75m.
- 3 Options for scheduling Part A & B, either:
 - Schedule both for one, 3 day session
 - Or, schedule A for 2 days following XMP-064, and then later, 1 day for B
 - Or, schedule 2 days for A following XMP-064, and leave 3rd day as an administrative decision pending results of the first 2 days
- Note: Delaying Part B also delays XPs dependent on the results of Part B.

NSTX EXPERIMENTAL PROPOSAL

TITLE: LLD Characterization

AUTHORS: H. Kugel, R. Maingi, V. Soukhanovskii

No. **OP-XP-1000** DATE: **3/4/2010**

1. Overview of planned experiment

- 1. 1 The first purpose of this experiment is characterization of the Liquid Lithium Divertor (LLD)
 pumping capability and its effects on plasma performance as compared with solid lithium coatings.
- 1.2 The second purpose of this experiment is to qualify LLD-1 for use as an operational tool to support XPs for the duration of the 2010 Run.
- 1.3 The third purpose of this experiment is to achieve the LLD Milestone as follows:
 - Install LLD-1.
 - Determine the relationship between lithiated surface conditions and edge and core plasma conditions.
 - Understand LLD-1 pumping, by a study of D retention as function of surface conditions such as Li coverage and LLD surface temperature, and plasma exhaust parameters such as: scrape-off layer density, temperature, strike-point location, and flux expansion.

2. Theoretical/empirical justification

Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD) and its characterization during the 2010 Experimental Campaign.

3. Experimental run plan

- 3.1 Prerequisites.
 - 3.1.1 Perform OP-XMP-64, "NSTX Start-up Commissioning and Evaluation Using Lithiumization" until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, τ_e ≥ 50ms, Se=200kJ.
 - 3.1.2 Depending on the results of OP-XMP-64, do or do not use strike point controls.
- 3.2 Guidelines, Decision Points, Contingency.
 - 3.2.1 During the NBI power scans, stacking of the early beams shall be applied if necessary to ensure constant front-end evolution, and reproducible H-mode transitions.
 - 3.2.2 During the NBI power scans, the pulse length and power shall be adjusted slowly to keep the LLD front-face temperature during discharges below 380-400°C to minimize evaporation.
 - 3.2.3 The R=0.35m case shall not be tested unless the R=0.63m case exhibits pumping.
- 3.3 Perform the discharges (cold, R=0.5m, 0.63m) listed in Part 1A.

DECISION POINT: If administratively approved, proceed to Part 2A (cold R=0.75m). If not approved, proceed to Part 1B (warm, R=0.5m, 0.63m).

3.4 If Parts 1A and 1B completed (cold and warm R = 0.5m, 0.63m) and if administratively approved, proceed to complete Part 2A and 2B (cold and warm R = 0.75m).

Day	State of	Outer	LLD	LITER	Lig	Fueling	Pnbi	No.
	LLD	Strike Pt	°C	20 mg/min	Deposited		$\mathbf{M}\mathbf{W}$	of
		R (m)			_		/msec	Sho
								ts

Part 1A. Do Reference Shots Using Cold LLD (To = $30-50^{\circ}$ C).

1	cold	0.50m	Rm temp	20mg/min		HFS	3	2
							5	2
						SGI	3	2
							5	2
		0.63m				HFS	2/100	2
							2/TBD	
						SGI	2/100	2
							2/TBD	
Select	best of HFS	and SGI, an	d Test persi	stence of pump	ing effect			
				OFF				5

If administratively approved proceed to Part 2A. If not proceed to Part 1B.

R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582.

R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.

Candidate Reference shots from 2008-09 database, 129015-19, 129038.

R=0.63m Kallman Shots 134986 - HFS, 134991 - SGI PF2L current ~ 3.5 kA (the value that strike point control approaches)

Part 1B. Do Reference Shots Using Warm LLD (To = 210-230°C).

- 1) Repeat Reference shots of Day-1.
- 2) Match n_e(t) by fueling with both HFS & SGI as required.
- 3) Proceed to lower fueling for lower ne(t) using both HFS & SGI.
- 4) Power variation as needed to stay below beta limit.

2	warm	0.50m	210°C	20mg/min		HFS	3	2
							5	2
						SGI	3	2
							5	2
		0.63m				HFS	2/100	2
							2/TBD	
						SGI	2/100	2
							2/TBD	
Select	best of HFS	and SGI, an	d Test persi	stence of pump	ing effect			
				OFF		TBD		5

- R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582.
- R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.
- Candidate Reference shots from 2008-09 database, 129015-19, 129038.
- R=0.63m Kallman Shots 134986 HFS, 134991 SGI
 PF2L current ~ 3.5 kA (the value that strike point control approaches)

If administratively approved, proceed to Part 2A. If not, wait until scheduled.

Part 2A. Do Reference Shots Using <u>Cold LLD</u> (To = 30-50°C).

- 1) Repeat Reference shots of Day-1.
- 2) Match n_e(t) by fueling with both HFS & SGI as required.
- Proceed to lower fueling for lower ne(t) using both HFS & SGI.
- 4) Power variation as needed to stay below beta limit.

3		0.75m		20mg/min		HFS	2/100	2
							2/TBD	2
						SGI	2/100	2
							2/TBD	2
Select	best of HFS	and SGI, an	d Test persi	stence of pump	ing effect			
				OFF		TBD		5

Part 2B. Do Reference Shots Using Warm LLD (To = 210-230°C).

- 1) Repeat Reference shots of Day-1.
- Match n_e(t) by fueling with both HFS & SGI as required.
- 3) Proceed to lower fueling for lower ne(t) using both HFS & SGI.
- 4) Power variation as needed to stay below beta limit.

3		0.75m		20mg/min		HFS	2/100	2
							2/TBD	2
						SGI	2/100	2
							2/TBD	2
Select	best of HFS	and SGI, an	d Test persi	stence of pump	ing effect			
				OFF		TBD		5

- R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582.
- R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.
- Candidate Reference shots from 2008-09 database, 129015-19, 129038.
- R=0.63m Kallman Shots 134986 HFS, 134991 SGI
 PF2L current ~ 3.5 kA (the value that strike point control approaches)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Perform OP-XMP-64, "NSTX Start-up Commissioning and Evaluation Using Lithiumization" until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, $\tau_e \ge 50$ ms, Se=200kJ.

5. Planned analysis

UEDGE, TRANSP, etc.

6. Planned publication of results

PSI2010, Nucl. Fusion, IAEA2010

PHYSICS OPERATIONS REQUEST

TITLE: LLD Characterization No. OP-XP-1000 AUTHORS: H. Kugel, R. Maingi, V. Soukhanovskii DATE: 3/04/10

(use additional sheets and attach waveform diagrams if necessary)

Brief description of the most important operational plasma conditions required:

- Perform OP-XMP-64, "NSTX Start-up Commissioning and Evaluation Using Lithiumization" until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, v, ≥ 50ms, Se=200kJ.
- R = 0.35m. 0.5m: Candidate Reference shots: 129061, 132582.
- R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.
- Candidate Reference shots from 2008-09 database, 129015-19, 129038.
- R=0.63m Kallman Shots 134986 HFS, 134991 SGI
 PF2L current ~ 3.5 kA (the value that strike point control approaches)

Previous shot(s) which can be repeated: Refer to Shot tables

Previous shot(s) which can be modified: Ibid. Refer to Shot tables

Machine conditions: Ibid,

 I_{TF} (kA): Flattop start/stop (s): I_{P} (MA): Flattop start/stop (s):

Configuration: LSN

Equilibrium Control: Outer gap / Isoflux (rtEFIT) / Strike-point control (rtEFIT)

Outer gap (m): Z position (m):

Elongation: Triangularity (U/L): OSP radius (m):

Gas Species: Injector(s):

NBI Species: D Voltage (kV) A: B: C: Duration (s):

ICRF Power (MW): Phase between straps (°): Duration (s):

LITERs: Off / On Total deposition rate (mg/min):

LLD: Temperature (°C): a) cold (30-50°C, b) warm (210-230°C)

EFC coils: Off/On Configuration: Odd / Even / Other

DIAGNOSTIC CHECKLIST

TITLE: LLD Characterization

AUTHORS: H. Kugel, R. Maingi, V. Soukhanovskii

Note special diagnostic requirements in Sec. 4

Note special alagnostic requir		
Diagnostic	Need	Want
Bolometer - tangential array	_ √	
Bolometer – divertor	- √	
CHERS – toroidal	√	
CHERS – poloidal	- √	
2 Divertor fast cameras	- √	
Dust detector	- √	
EBW radiometers		
Edge deposition monitors	-√	
Edge neutral density diag.	-√	
Edge pressure gauges	-√	
Edge rotation diagnostic	-√	
Fast ion D_alpha - FIDA		-√
Fast lost ion probes - IFLIP		-√
Fast lost ion probes - SFLIP		-√
Filterscopes	√	
FIReTIP	√	
Gas puff imaging		
Hα camera - 1D	-√	
High-k scattering	-√	
Infrared cameras	-√	
Interferometer - 1 mm	- √	
Langmuir probes – divertor	- √	
Langmuir probes – BEaP		-√
Langmuir probes - RF ant.		-√
Magnetics - Diamagnetism	- √	
Magnetics – Flux loops	-√	
Magnetics - Locked modes	-√	
Magnetics - Pickup coils	-√	
Magnetics – Rogowski coils	√	
Magnetics – Halo currents	-√	
Magnetics – RWM sensors	-√	
Mirnov coils - high f.	√	
Mirnov coils - poloidal array	√	
Mirnov coils – toroidal array	√	
Mirnov coils - 3-axis proto.	√	

No. OP-XP-1000

DATE: 3/04/10

Note special diagnostic require		
Diagnostic	Need	Want
MSE	- √	
NPA – ExB scanning		
NPA - solid state		
Neutron measurements	-√	
Plasma TV	- √	
Reciprocating probe		
Reflectometer – 65GHz	-√	
Reflectometer - correlation	-√	
Reflectometer – FM/CW	-√	
Reflectometer – fixed f	√	
Reflectometer - SOL	-√	
RF edge probes		
Spectrometer – SPRED	- √	
Spectrometer – VIPS	√	
SWIFT – 2D flow	- √	
Thomson scattering	√	
Ultrasoft X-ray arrays	- √	
Ultrasoft X-rays – bicolor	- √	
Ultrasoft X-rays – TG spectr.	√	
Visible bremsstrahlung det.	- √	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS	√	