

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Supported by

W UNIVERSITY of WASHINGTON

XP 1002: Core impurity density and *P_{rad}* reduction using divertor condition modifications College W&M **Colorado Sch Mines**

V. A. Soukhanovskii, LLNL and NSTX Team

> **NSTX** Team Review Princeton, NJ 15June 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching ASCR, Czech Rep **U** Quebec

Significant core n_c and P_{rad} reduction observed in divertor heat flux mitigation experiments (w/o lithium)

Due to more frequent ELMs? or source reduction?

ODNSTX Lawrence Livermore National Laboratory

V. A. Soukhanovskii, XP1002 Review, 15 June 2010, Princeton, NJ

Divertor carbon source evaluation in PDD discharges was inconclusive

Significant core n_c and P_{rad} reduction observed in snowflake divertor experiments

- Medium- δ 0.9 MA 4-6 MW NBI discharge (standard divertor, black)
- "Snowflake" divertor with detached outer strike point region (red)
- Used lithium at ~ 8-10 mg/min

awrence Livermore

First detachment observation in NSTX without gas puffing

Use deuterium divertor injection to study effects on core impurity density

- In a discharge with gas puffing
 - T_e -dependent physical and chemical carbon sputtering rates are reduced
 - reduced impurity source ?
 - neutral pressure increased in SOL and divertor
 - preferentially decreased wall impurity source?
 - increased impurity compression in divertor due to D flow?
 - parallel momentum balance (viscosity), E_r , SOL flows (both drift and source) changed → change SOL radial impurity transport ?
 - n₀-dependent neoclassical convention in confined edge plasma?
 - collisional thermalization of fast ions?
- In lithium discharges inner divertor is attached (while it is detached in no-lithium discharges)
 - Inner divertor a significant carbon source?
- Generally ELM-free H-modes present a unique opportunity to study impurity sources and SOL impurity transport

Run plan focuses on developing a scenario with minimum divertor gas rate and no core impurity accumulation

- Obtain a reference discharge, 3-5 MW NBI, high triangularity shape w/ PF1A, LITER rate 10-20 mg/min (100-200 mg), R_{OSP}=0.40-0.55 m, nearly ELM-free Hmode, long pulse (~ 1s), HFS fueling
 - 1 MA, similar to discharges 138178, 138180
 - Optional, time permitting 0.8 MA, similar to discharges 138239-1380241
 - If available, use PCS strike point control
- Use Bay E divertor gas injector at 5000 Torr (up to 200 Torr I /s) for divertor gas injections. Gas delay in respect to the valve opening time is about 100 ms.
- Injection in the initial phase of discharge use best injector rate and start at t=0.100-0.150 ms
- Optional, time permitting obtain data for lower-end NBI power (2-3 MW) and higher-end NBI power (4-5 MW)
- Optional, time permitting, pending administrative approval use a medium-d discharge target with OSP at *R*=1.75 m to take advantage of the Langmuir probe array
- Optional, time-permitting use CD₄ injection instead of D₂

Backup

XP-scope

