

Supported by

XP-10??: RFA Suppression With Different Sensors and Time Scales in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL **Johns Hopkins U** LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. P. Gerhardt, J. E. Menard, S. A. Sabbagh

> NSTX Team Review April 19th, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Overview

- Background:
 - RFA is the amplification of "error fields" by a *stable* RWM.
 - The resulting rotation damping can destabilize the RWM.
 - In 2007, JEM utilized RFA to develop a DEFC scheme.
 - XP-701 used B_P sensors only.
 - New compensations have been implemented in real-time, allowing better mode identification using B_R sensors.
- Goals of proposed XP:
 - Determine B_R sensor compensations and FB parameters which are optimal for error field correction.
 - Examine system response to applied n=1 fields.
 - Examine system response to the intrinsic time-varying error field.
 - Attempt to minimize rotation damping and pulse length using B_R feedback.
 - Compare results to DEFC with B_P sensors.
 - Verify appropriate F.B. gain and phase for newly-compensated B_P and B_R sensors, using RFA suppression as a guide.
- Contributes to:
 - MDC-2: Joint experiments on resistive wall mode physics.
 - MS Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.
 - Improved reliability of NSTX operations.

Outline

- New sensor compensations
- Results from previous XPs
- Considerations and shot list for this XP

Outline

- New sensor compensations
- Results from previous XPs
- Considerations and shot list for this XP

New Realtime Sensor Compensations For Improved Mode Identification

- Sensors should measure the n=1 field from the plasma only.
 - Need to "compensate" the ith sensor B_i for other sources of field
 - With proper compensations, vacuum shots produce no signal
- Three compensations now in realtime system

remaining compensation: vessel eddy currents via loop voltages

OH x TF Compensations Important For The B_R Sensors (I)

OH x TF Compensations Important For The B_R Sensors (II)

NSTX

AC Compensations Remove dl_{RWM}/dt Driven Eddy-Current Pickup

$$C_{AC,i}(t) = \sum_{j}^{NumRWMCoils} \sum_{k=0}^{k_{max}} p_{i,j,k} LPF\left(\frac{dI_{RWM,j}(t)}{dt};\tau_k\right)$$

- Sensors should measure the n=1 field from the plasma only.
 - Direct mutual coupling of RWM coil to sensors has always been subtracted off in PCS.
 - Eddy currents due to dl_{RWM}/dt leads to pickup without plasma.
 - Eddy currents are out of phase with the coil currents.
- Realtime AC compensations may be useful for:
 - Mode identification during fast feedback.
 - SAS proposal on fast feedback.
 - Mode identification with rapidly changing preprogrammed currents.
 - ELM triggering experiments.
 - Future realtime RFA measurements.

New Sensor Compensation Fully Implemented in PCS "miu" Algorithm (I)

Red: Calculations in idl, from Jon's routines Blue: Calculations in idl, in a form appropriate for PCS (streamlining a bunch of loops) Green: Archived PCS Calculations

() NSTX

DEFC Comparison With Different Sensors (Gerhardt, et al.)

New Sensor Compensation Fully Implemented in PCS "miu" Algorithm (II)

Red: Calculations in idl from Jon's routines Blue: Calculations in idl in a form appropriate for PCS (streamlining a bunch of loops) Green: Archived PCS Calculations

Compensations Result in ~40° Shift in Phase of B_R Detected EF

Static Compensations, as in the old algorithm. All Compensations

More About the New "miu" Algorithm

- Provides identical "outputs" as the present mid algorithm
 - Mode amplitude and phase from B_P , B_R , & B_P + B_R sensors.
 - Fully interchangeable with the mid algorithm for RWM control.
- Allows separate re-zeroing times for B_R and B_P sensors.
 - Old mid algorithm had a single common re-zeroing time.
- Has switches to turn off the new compensations.
 - "static only"
 - "static +AC"
 - "static+OH×TF"
 - "static+AC+OH×TF
- All compensation coefficients are read from the model tree.
 - Many new nodes open in the model tree in September.
- Archives many many internal calculations for comparison to off-line.
- Prepares sensor data for the state-space controller.

"miu" was used on Friday the 16th without incident.

Outline

- New sensor compensations
- Results from previous XPs
- Considerations and shot list for this XP

2007 Experiment Had a Phase Scan... ...and a Gain Scan

- Pre-programmed n=1 EF correction requires a priori estimate of intrinsic EF
- Detect plasma response → EF correction using <u>only feedback on RFA</u>

→ Use same gain/phase settings to suppress RFA from intrinsic EF **and** any unstable RWMs

2007 Experiment Had a Phase Scan... ...and a Gain Scan

Upper B_p Sensors

"Combined" B_P Sensors

2008 Also Had Feedback Attempt With B_R Sensors

XP-802, Sabbagh et al.

• Combined $B_P + B_R$

- B_R feedback phases around ~290° appear to be useful.
- B_R feedback gains of 0.7 appeared stable.
- Time average appliedfield phase of ~290-320° is not well aligned to the known OHxTF correcting phase of ~30-40°.
- Compensated B_R sensors detect OHxTF with phase of ~110°.
 - Implies that a good feedback phase would be 150°.
- Use this result as guidance for the XP.

NSTX

Recommended B_P Spatial Phase Does Not Change, but B_R Phase of 180° Is Recommended.

- Find time in discharge when there is likely to be a dominant n=1 mode.
 - Just after an n=1 mode stops rotating and locks to the wall.
 - Large RWM.
- Find spatial phase that maximizes the n=1 amplitude.
- For B_P sensors, spatial phase of 150-180° is the clear winner.
- Appears to be an optimum for B_R sensors around 180 as well.
 - XP-802 used 0° B_R spatial phase for feedback, while off-line analysis presently uses 250°.

Use this spatial phase (180°) when generating the mode-ID matrix for realtime control

Can Also Determine the Spatial Phase from RFA Response

- Pick long-pulse discharge with steady n=1 perturbation detected in the B_R sensors.
- Study amplitude and phase response was as a function of the "spatial phase".

DEFC Comparison With Different Sensors (Gerhardt, et al.)

Outline

- New sensor compensations
- Results from previous XPs
- Plan for this XP

Experimental Plan (I)

3.0: Off-line testing

The miu algorithm should be tested sufficiently before running the XP that all bugs are eliminated.

3.1: Sensor compensation test:

In the days leading up to the running of this XP, the following coil-only shots should be taken

Туре	Example Shot #	Shot for XP
TF only	137505, 137732	
TF + Simple Bipolar OH	137648	
TF + Plasma like OH waveform	137650	

3.2: Development of reference shot

(3 shots)

3.2.1 Load ~800 kA, B_T =0.45 T discharge, fiducial shape. Use beta-control to achieve β_N ~5.5. Discharge should suffer rotation collapse and RWM. Note that XP-701 used 1 MA and 0.44 T, while nice 800 kA high- β shots from J. Berkery's XP (133775) used 0.39 T.

3.2.2 If rotation collapse and RWM do not occur, then repeat discharge with either:

i) Increased power and β_N .

ii) Adding ~300 A of steady-state n=1 field (SPA-1 @ 300 A, SPA-2 @ 300 A, and SPA-3 @0 A). This adds to the intrinsic EF.

Experimental Plan (II)

3.3: Phase and Gain Scan with B_{R} Sensors

(10 shots)

3.3.1 Starting with a gain of 1, execute scan over B_R feedback phase and gain, as per the following table. Monitor pulse length (disruptivity) and rotation sustainment as a function of feedback phase.

Shot	Feedback Phase	Feedback Gain	
	270	1	
	90	1	
	180	1	
	360	1	

3.3.2: Repeat best case with OHxTF compensations turned off. Look for a reduction in the plasma rotation and/or increased disruptivity.

Experimental Plan (III)

3.4: Phase and Gain Scan with B_P Sensors

(8 shots)

Starting with a gain of 1, execute scan over B_{H} feedback phase and gain, as per the following table. Monitor pulse length (disruptivity) and rotation sustainment as a function of feedback phase.

Shot	Feedback Phase	Feedback Gain	
	270	1	
	90	1	
	180	1	
	360	1	

Experimental Plan (IV)

3.5: Compensation of the Intrinsic EF

If the cases in 3.2 and 3.3 used 3-D fields from the RWM coils, not the intrinsic EF, then repeat the best case for each sensor combinations with the intrinsic EF only. Repeat the B_R feedback case with the OHxTF compensation turned off. Also try a case with B_P+B_R combined using the best settings for each. Be sure that discharge lasts into the phase of large intrinsic EF.

3.6: Time Dependent RFA Suppression:

Pick best RFA suppression scheme from 3.3 & 3.4. Add an n=1 traveling wave of various frequencies, likely with 1 kA amplitude. System should suppress the traveling waves.

TW Amp	TW Freq	Sensor Polarity	F.B. Gain	F.B. Phase	Shot
1kA	20				

(5 shots)

(4 shots)

Readiness...

- miu algorithm has been tested with plasma shots, doesn't crash PCS, produces reasonable results.
 - B_R sensors agree very well with similar off-line compensations, but haven't yet entered a matrix for the B_R sensors.
 - no mode amplitude and phase comparisons have been done.
 - B_P sensors have some small differences between online and off-line.
 - Leads to different phases when the n=1 modes are very small.
- Beta-control works and is apparently ready to go.
- XP could probably run with the 1-LITER system, but would be much better with 2.

Physics Operations Request

Brief description of the most important operational plasma conditions required:

High- β , long-pulse fiducial like discharge will be utilized. Confinement should be good enough to achieve $\beta_N \sim 6$ with 6 MW input power with $I_P \sim 800$ kA.

The new "miu" algorithm should have been tested and fully qualified. Also, control of the plasma β via neutral beam modulation may be incorporated.

Previous shot(s) which can be repeated:

Previous shot(s) which can be modified: Any high- κ , high- δ fiducial like discharge.

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

I _{TF} (kA): 0.4-0.44 T	Flattop start/stop (s):	Longest consistent with I ² t on the coil.
---	-------------------------	---

 $I_{\rm P} \, ({\rm MA}): \ \textbf{800-900 kA} \qquad \mbox{Flattop start/stop (s): Longest possible}$

Configuration: Limiter / DN / LSN / USN

Equilibrium Control: Outer gap / Isoflux (rtEFIT) / Strike-point control (rtEFIT)

Outer gap (m): **10-15 cm** Inner gap (m): ~5 Z position (m): ~-2 cm

Elongation: 2.3-2.4 Triangularity (U/L): 0.5/0.75 OSP radius (m): high-δ

Gas Species: D Injector(s):

NBI Species: **D** Voltage (kV) **A: 90 B: 70-90 C: 70-90** Duration (s):

ICRF Power (MW): 0 Phase between straps (°): Duration (s):

CHI: Off Bank capacitance (mF):

LITERs: On Total deposition rate (mg/min): 20 total from two evaporators

LLD: No Temperature (°C): Unheated

EFC coils: On Configuration: Odd

Diagnostic Checklist

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		
Bolometer – midplane array	√	
CHERS - poloidal		√
CHERS - toroidal	√	
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		√
Edge rotation diagnostic		
Fast cameras - divertor/LLD		
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		√
FIReTIP		
Gas puff imaging - divertor		
Gas puff imaging - midplane		
Hα camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – LLD		
Langmuir probes – bias tile		
Langmuir probes – RF ant.		
Magnetics – B coils	√	
Magnetics – Diamagnetism		√
Magnetics - Flux loops	√	
Magnetics - Locked modes		
Magnetics – Rogowski coils	√	
Magnetics - Halo currents		√
Magnetics - RWM sensors	√	
Mirnov coils – high f.		
Mirnoy coils – poloidal array		
Mirnov coils – toroidal array	√	
Mirnov coils – 3-axis proto.		

Diagnostic	Need	Want
MSE	√	
NPA – EllB scanning		
NPA – solid state		
Neutron detectors	√	
Plasma TV	√	
Reflectometer - 65GHz		
Reflectometer - correlation		
Reflectometer - FM/CW		
Reflectometer - fixed f		
Reflectometer - SOL		
RF edge probes		
Spectrometer - divertor		
Spectrometer - SPRED		
Spectrometer - VIPS		
Spectrometer - LOWEUS		
Spectrometer - XEUS		
SWIFT – 2D flow		
Thomson scattering	√	
<u>Ultrasoft</u> X-ray – pol. arrays		\checkmark
Ultrasoft X-rays - bicolor		
Ultrasoft X-rays - TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang, pinhole camera		

Backup

Goals For Proposed Experiment

- Qualify B_R sensors for error field correction.
 - Determine the optimal phase shift and gain for DEFC.
 - Can start with results from Steve's XP in 2008
 - Determine if OHxTF sensor compensation is necessary...or beneficial...or irrelevant.
 - Fast feedback is out of scope
- Determine if one or the other sensor type is better for correction:
 - Reduced fluctuations in the FB coil current?
 - Improved rotation sustainment?
 - Higher gain?
- Examine β -dependence of FB response.

AC Compensations Can Be Important For

Need to Keep a Careful Eye on Compensations Through the Run

Beginning of Run End of Run 10 10 B_R, Upper Differences B_B, Upper Differences 131594 135636 8 8 n=1 Amplitude (G) n=1 Amplitude (G) Static Compensation Static Compensation **Full Compensation Full Compensation** 6 2 2 0 0 -0.5 0.0 0.5 1.0 1.5 0.5 1.0 -0.5 0.0 1.5 time (sec.) time (sec.) 20 **Toroidal Field Coil** 20 **Toroidal Field Coil Ohmic Coil Ohmic Coil** Coil Current (kA) Coil Current (kA) 0 0 -20 -20 -40 -40 -60 -60 -0.5 0.0 0.5 1.0 1.5 0.5 0.0 1.0 1.5 -0.5 time (sec.) time (sec.)

DEFC Comparison With Different Sensors (Gerhardt, et al.)

Other Stuff

- Lithium
 - LITER at ~200 mg/shot
 - No LLD
- Diagnostics
 - Profile diagnostics
 - RWM detection

- Analysis
 - MSE reconstructions.
 - DCON for proximity to ideal stability limits.
 - Intrinsic EF and detailed RWM sensor analysis.

