

S.A. Sabbagh¹, T.E. Evans², L.E. Zakharov³, J-W. Ahn⁴, J. Canik⁴, R. Maingi⁴, J.W. Berkery¹, J.M. Bialek¹, S. Gerhardt³, J-K. Park³, Y-S. Park¹, H. Takahashi³, K. Tritz⁵, et al.

¹Department of Applied Physics, Columbia University ²General Atomics ³Princeton Plasma Physics Laboratory ⁴Oak Ridge National Laboratory ⁵Johns Hopkins University

NSTX Team Meeting

June 2nd, 2010 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

epartment of Er

XP1031: MHD/ELM stability dependence on thermoelectric J, edge J, and collisionality

Motivation

- Test the role of field-aligned and toroidal current and collisionality in ELM stability, making connection to general macroscopic stability
- Verify a broader model of ELM stability that is consistent with existing work, and further explains apparent incongruities from present experiments

Goals/Approach

- Test expectations of expanded ELM stability theory using relatively straightforward machine capabilities
 - Focus on altering field-aligned and edge toroidal J, 3D field amplitude, collisionality
- Determine if ELM stability follows theory
 - May provide understanding of ELM mitigation/excitation
 - Link expanded theory to peeling/ballooning model, link to general ideal stability

Addresses

ITPA experiments R10-1, R10-3, MDC-2, PEP-25; ITER Urgent task re: ELMs

XP818: Successfully altered ELM stability, but left us

with more questions than answers...

Approach/Expectations

- Mitigate ELMs by ergodizing plasma in the pedestal region using nonaxisymmetric (3D) field, reducing pressure gradient drive of ELM
 - Expand past NSTX XP by Evans, et al., that used only n = 3 DC fields
- Calculated favorable 3D field spectra for ELM mitigation, based on Chirikov profile and DIII-D experience
 - Vacuum and IPEC studies conducted by J-K. Park to determine best configurations
 - Various fields odd and even parity, both AC and DC fields run in experiment
 - Lower q₉₅ target plasma thought favorable

Reality

- □ Favorable NA applied fields triggered ELMs, rather than mitigating them
 - ELM frequency changed, compound ELM events produced
 - ELM dynamics changed for odd, even, mixed parity ("2+3") 3D fields, AC and DC fields produced similar results
 - Supported further studies by Canik, et al. to trigger ELMs "on-demand"

What physics model can explain these unexpected results?

XP818: New n = 2 config. used to compare to past n = 3 results

<u>n = 2 field configuration (planform view)</u>

<u>n = 3 field configuration (planform view)</u>

<u>XP818 Vacuum, IPEC computed Chirikov parameter > 1 near</u> <u>edge for n = 2, n = 3 field configurations used in experiments</u>

<u>XP818: Reduced ELM frequency, increased D_α duration</u> <u>observed in AC applied field configurations</u>

ELMs broaden, roughly match frequency of applied field

Broadening due to multiple ELMs/filaments "compounded" together
 effectively decreases frequency

Test an expanded model for ELM stability in NSTX

Stability model / Features

- Consider a model that addresses non-linear ELM dynamics
 - Highlight of present model is instability drive due to thermoelectric (TE) currents (Evans, et al., JNM 2009)
 - □ 3-D field splits smooth separatrix surface into two unique invariant manifolds
 - Overlap of these invariant manifolds creates a "homoclinic tangle", enhances TE current
 - Behavior of model can be tested in controlled NSTX experiment
 - □ Higher 3D field amplitude increases TE current DESTABILIZING (XP818)
 - TE current connection length decreases as X-point moved closer to wall DESTABILIZING
 - » LSN vs. USN should be differ due to grad(B) drift scaling unknown
 - as pedestal electron collisionality decreases: (i) ELM size / depth of penetration increases, (ii) ELMs become larger, have lower frequency

Model is complementary to standard peeling/ballooning model

Results of peeling/ballooning linear growth model for NSTX (R. Maingi, et al. PRL 2009) examine grad(p) drive; present study expands to other sources of instability

Test / compare TE current drive to toroidal current instability drive

- Positive edge toroidal current drives macroscopic MHD instabilities
 - Grad(p) drive already tested by Maingi, et al. Focus here on current drive and collisionality aspects of the instability

TE current connection length decreased by 3D field

Ideal MHD model expects stabilizing/destabilizing resonance effect near marginal stability

- Connect peeling/ballooning mode current drive to q resonance variation
 - Slow I_p ramps at fixed B_t will scan q
 - Examine "which q" matters
 - If plasma is ergodized from the pedestal outward, then it's the first key rational outside of the pedestal position
 - Note that finite |dq/dt| will lead to rotation of homoclinic tangle and modulation of the striations – observable by fast IR camera (TE current modulated as well)

Slow I_p ramps at fixed q is an important comparison to finite |dq/dt| case

<u>XP1031: MHD/ELM stability dependence on</u> thermoelectric J, edge J, and collisionality – shot plan

Task Number of Shots		
1) Generate target		
A) Preferable is LSN ELMing plasma target (shot 137564), suitable for +/- Z movement	2	
- (choose 3D field magnitude based on XP818 experience: $n = 3$ configuration also allows use of	n = 1)	
- Plasma control: suggest (i) PF3-boundary position (squareness), (ii) DRSEP, (option: use outer	SP con	trol)
2) Vary TE current connection length at fixed 3D field		
A) LSN: vary Z until ELMs appear or disappear (three Z positions)	5	
 B) DND: C) USN: (two Z positions) - (contrast grad(B) drift direction / effect to condition (2A)) 	2 4	
3) Vary 3D field amplitude		
A) near marginal condition from (2), still ELMing, decrease $n = 3$ field until ELMs go away	3	0.5 day
B) near marginal condition from (2), not ELMing, increase $n = 3$ field until ELMs return	3	
4) Vary toroidal current density near the edge		
A) near marginal condition from (2), still ELMing, decrease I _p with slow ramp, attempt ELM stabilization	on 3	
B) near marginal condition from (2), not ELMing, increase I _p with slow ramp, for ELM destabilization	3	
C) redo (A) and (B) with TF ramp up/down to keep q approximately fixed	4	0.5 day
5) Vary collisionality with LLD		
A) Rerun successful conditions above at reduced collisionality with LLD		16
Tota	al: 29;	16

<u>XP1031: MHD/ELM stability dependence on</u> <u>thermoelectric J, edge J, and collisionality –</u> <u>Diagnostics, etc.</u>

- Required diagnostics / capabilities
 - **RWM** coils in standard n = 1,3 configuration
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - MSE
 - Standard magnetics / diamagnetic loop
- Highly desired diagnostics
 - LLD shunt tile measurements of SOL currents
 - Langmuir probes set up for edge current measurement
 - Fast IR camera and/or LLD fast cameras
 - USXR

