

Supported by

Office of Science

XP 1036: L-H power threshold for D and He plasmas using HHFW with symmetric phasing

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INFI Johns Hopkins U LANL I I NI Lodestar MIT Nova Photonics New York U Old Dominion U ORNI PPPI PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

D. Battaglia, S. Zweben, Y. Ren, G. Taylor, R. Maingi, S. Kaye

2:30 PM B318 April 5, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAFA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

In 2009, XP941: Species dependence of P_{LH} and P_{HL}

- I_p = 600 kA, B_t = 5.4kG
 D and He in 1/2 day
- HHFW with -90° phasing
 - Sensitive to edge density
 - About 20% heating efficiency
- Continuous ramp in HHFW provided fine P_{RF} resolution
- "Perturbation technique" for determining e⁻ heating

- P_{RF} = <0.16> +- 0.1 MW

- Observations:
 - P_{LH}/n_e similar for D and He
 - $P_{HL} < P_{LH}$ (hysteresis)
 - Slower pedestal buildup compared to NBI

In 2009, XP929: Edge turbulence imaging during LH transition in NBI heated discharges using GPI

XP1036: Characterize the LH power threshold, the edge turbulence and the high-k turbulence for D and He plasmas

- $I_p/B_t = 2 \text{ MA/T for T&T diagnostics}$
 - GPI: Comparison of RF and NBI heated LH transition
 - BES: Turbulence in OH+RF L and H-mode
- Symmetric (180°) phasing
 - Reduce variation in e⁻ heating (smaller P_{RF} error bars)
 - Easier to couple to lower B_t
- High-k scattering vs Z_{eff} and RF power in L-mode
 - ETG turbulence is sensitive to $Z_{eff}T_e/T_i$

XP 1036 overview

- Conditioning XP ...
 - Determine shape, lithium deposition and LLD parameters for RF operation
 - Develop $I_p = 900 \text{ kA}$, $B_t = 4.5 \text{ kG}$ target
 - Demonstrate coupling of 4 MW HHFW in He and D with 180° phasing
- RF ramp to maximum power with He
 - Ramp RF power following start of flattop
 - Establish LH and HL power thresholds
- RF power steps to power threshold with He
 - dW/dt following P_{RF} steps used to determine RF heating power
 - RF power flattop near power threshold
 - If LH transition, useful for GPI. Next shot lower max P_{RF} by ~10%.
 - If no LH transition, useful for high-k. Next shot decrease max P_{RF} by ~10%.
 - Aim to get ~ 3 shots with and ~3 shots without transition
- If time, OH only H-mode using sharp decrease in V_{loop}
 - GPI during transition
- Repeat with D

(7 – 14 shots)

(1 - 4 shots)

(6-10 shots)

First target discharge: RF ramp

Ramp RF power to find LH power threshold May also get HL threshold

1-4 shots

Keep GPI on for these shots for consistent gas injection

Second target discharge: RF steps

6 - 10 shots

Three or four 50 ms steps to LH power threshold level GPI near anticipated LH transition time Raise and lower max RF and power step down between shots

XP1036 Requirements

- Requirements:
 - HHFW compatible with LLD (hot or cold)
 - Reliable coupling of 4 MW of RF power into plasmas with $I_P/B_T = 2 \text{ MA/T}$
 - Source A NBI only
 - High-k, GPI, MPTS, CHERS, filterscopes, magnetics
 - EFIT, TRANSP
- Desires:
 - Bolometer, reflectometer, FIReTip, USXR, BES, Edge D_{α} , ERD

Backup slides

Slow scans of HHFW power used to measure the L-H/H-L thresholds in pure He and D plasmas

- Use change in edge profiles to determine transitions
 - Transitions not always obvious in D_{α} signal with slow power scan
 - No D_{α} signal in pure He plasmas

L-H power thresholds for He and D are similar

- (P_{RF} + P_{OH})/n_e similar for P_{LH} thresholds with D and He
 P_{HL} not effectively normalized by n_e
- H-L thresholds indicate some hysteresis
- Large error bars due to uncertainty in RF heating efficiency

H-mode achieved for $I_p = 900$ kA, $B_t = 4.5$ kG with OH heating

- OH-only discharges achieve ~ 130 ms flattop
 - Suitable for measurements?
 - Current relaxation?
- LH transition occurs when V_{loop} drops
 - Phenomenon often observed but not explained
 - Target: OH-only discharge that remains in L-mode

C. Bush, NSTX Results Review - Dec 2005

Comparison of XP shapes

135294 at 320 ms

 $(\underline{u}_{N})^{2}$ $(\underline{u$

OH H-mode 116326 at 200 ms