Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Extending reversed shear scenarios Effective Date: (Approval date unless otherwise stipulated) **OP-XP-1040** Revision: Expiration Date: (2 yrs. unless otherwise stipulated) **PROPOSAL APPROVALS Responsible Author: H. Yuh** Date ATI – ET Group Leader: H. Yuh Date **RLM - Run Coordinator: E. Fredrickson** Date **Responsible Division: Experimental Research Operations** Chit Review Board (designated by Run Coordinator) **MINOR MODIFICATIONS** (Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE: Extending reversed shear scenarios AUTHORS: H. Yuh

No. **OP-XP-939** DATE:

1. Overview of planned experiment

This experiment seeks to extend the L-mode reversed shear discharges to a full current relaxation time by avoiding the MHD induced current redistribution by limiting the heating of the e-ITB. The XP further seeks to transition into H-mode while maintaining a reversed shear q-profile.

2. Theoretical/ empirical justification

Although high confinement ITBs have been observed in previous XPs, using NBI, NBI+RF (XP829), or RF only (XP821), a rapid influx of current to the core as fast or faster than the MSE time resolution (10ms) is routinely observed (see q_0 - q_{min} in third panel). This rapid change in q-profile ends the period of improved internal transport. While the primary goals of the XP in the past campaigns have been to document the q-profile and turbulence behavior during the RS phase, this XP will focus on two phases

 T&T - Avoiding the rapid redistribution of current to the core and characterizing turbulence through a current relaxation time. Observe evolution of high-k fluctuations through current relaxation, which is effectively a magnetic shear scan in time. Observe the effect on transport of high-k bursts independent of MHD induced current redistribution. 2. ASC – Maintaining the RS q-profile with the ITB through an H-mode transition has been discussed for years. It will be attempted in earnest in this XP.

3. Experimental run plan

The XP will focus on trying to sustain the RS scenario so that it does not result in a transition to a monotonic q-profile via anomalous current redistribution.

- Recover conditions similar to 129169 (5.5kG). If LITER is available, inject at a moderate rate, 10-15 mg/min. Due to sensitivity of early current profile to density and not having run this XP since 2008, it may takes 6-8 shots to achieve this. Use this time to start coupling RF at 200ms, adjusting outer gap to optimize RF coupling as requested.
- 2. Current (ramp) scan Determine if 1.1 or 1.2MA extends RS conditions. Adjust I_p ramp rate to flatop ± 20 ms to observe effect on current redistribution.

Best condition from Step 1, change to 1.1MA	1 shot
Best condition from Step 1, change to 0.9MA	1 shot
Change early (first stage) ramp point by ±50kA for effect	2 shots
Change second stage ramp rate ±20ms of best current condition	2 shots

3. Select most sucessful I_p and ramp rate to try and sustain the RS for as long as possible. Use RWM coils if locked modes are present.

Substitute Src A@90kV with B@65kV at 200ms, try producing RS w/B only	2 shots
Turn off A at 200ms, inject RF only at increasing increments 1-2 MW	4 shots
Add Src B with RF	2 shots
If non-Src A heating is used successfully, document current profile with Src A blips at	3 shots
times of interest.	

4. Select a sustained ITB shot and try to induce a L-H transition.

Increase inner gap and center stack gas. Use favorable drsep. Turn A off and inject maximum RF available at 200ms.	3 shots
Use ramping RF power to drive discharge into H-mode	6 shots
Document H-mode using Src A.	4 shots

4. Required machine, NBI, RF, CHI and diagnostic capabilities

The RF XMP must have been completed RF will be required.

Lithium evaporation required at a moderate rate 10-15mg/min. Using LLD to reach low collisionality may be KEY to preventing tearing modes that cause current redistribution.

NBI Src A @ 90kV and B&C @ 65kV will be required.

MSE and high-k required, BES is highly desirable.

RWM coils should be used in error field correction, and later in feedback mode if necessary.

Attach completed Physics Operations Request and Diagnostic Checklist.

5. Planned analysis

LRDFIT with MSE, TRANSP, gyrokinetic codes GS2 and/or GYRO, MHD stability codes will be used.

6. Planned publication of results

If results are of publication quality, they will be published in the appropriate journals.

PHYSICS OPERATIONS REQUEST

TITLE: AUTHORS:

No. **OP-XP-** DATE:

(use additional sheets and attach waveform diagrams if necessary)

Describe briefly the most important plasma conditions required for the experiment: Start with model 129169 Reversed shear L-mode to begin. Lithium. Previous shot(s) which can be repeated: Previous shot(s) which can be modified: **Machine conditions** *(specify ranges as appropriate, strike out inapplicable cases)* I_{TF} (kA): Flattop start/stop (s): $I_P(MA)$: Flattop start/stop (s): Configuration: Limiter / DN / LSN / USN Equilibrium Control: Outer gap / Isoflux (rtEFIT) Outer gap (m): Inner gap (m): Z position (m): Elongation κ : Upper/lower triangularity δ : Gas Species: Injector(s): NBI Species: D Voltage (kV) A: Duration (s): **B**: **C**: **ICRF** Power (MW): Phase between straps (°): Duration (s): Bank capacitance (mF): CHI: Off/On Total deposition rate (mg/min): LITERs: Off / On Configuration: Odd / Even / Other (attach detailed sheet EFC coils: Off/On

DIAGNOSTIC CHECKLIST

TITLE: AUTHORS:

No. **OP-XP-** DATE:

Diagnostic No	ed Want
Bolometer – tangential array	
Bolometer – divertor	
CHERS – toroidal	\checkmark
CHERS – poloidal	\checkmark
Divertor fast camera	
Dust detector	
EBW radiometers	
Edge deposition monitors	
Edge neutral density diag.	
Edge pressure gauges	
Edge rotation diagnostic	
Fast ion D_alpha - FIDA	
Fast lost ion probes - IFLIP	
Fast lost ion probes - SFLIP	
Filterscopes	
FIReTIP	V
Gas puff imaging	
Hα camera - 1D	
High-k scattering	\checkmark
Infrared cameras	
Interferometer - 1 mm	
Langmuir probes – divertor	
Langmuir probes – BEaP	
Langmuir probes – RF ant.	
Magnetics – Diamagnetism	
Magnetics – Flux loops	\checkmark
Magnetics – Locked modes	
Magnetics – Pickup coils	\checkmark
Magnetics – Rogowski coils	\checkmark
Magnetics – Halo currents	
Magnetics – RWM sensors	\checkmark
Mirnov coils – high f.	\checkmark
Mirnov coils – poloidal array	
Mirnov coils – toroidal array	
Mirnov coils – 3-axis proto.	

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE		
NPA – E B scanning		
NPA – solid state		
Neutron measurements		
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering		
Ultrasoft X-ray arrays		
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		