Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: ETG turbulence isotropy				
	PROPOSAL AP		i ,	
Responsible Author: D	avid Smith		Date Sept. 21, 2010	
ATI – ET Group Leade	I – ET Group Leader: Howard Yuh (T&T)		Date	
RLM - Run Coordinate	or: Eric Fredrickson		Date	
Responsible Division:	Experimental Research O _I	perations		
MINOR MOD	IFICATIONS (Approved	l by Experimental Re	esearch Operations)	

NSTX EXPERIMENTAL PROPOSAL

TITLE: ETG turbulence isotropy AUTHORS: David Smith No. **OP-XP-1070** DATE: Sept. 21, 2010

1. Overview of planned experiment

The isotropy of ETG turbulence in the $k_r k_{\theta}$ plane is an area of active debate within the GK community. In this experiment, we will investigate the isotropy of ETG turbulence by adjusting the ratio k_{θ}/k_r in highk scattering measurements of ETG turbulence. Also, this experiment will probe the possible transition from anisotropic ETG to isotropic ETG using Ip ramp-downs to transiently alter the magnetic shear.

2. Theoretical/ empirical justification

According to simulations, anisotropic ETG turbulence with radial streamers generates high levels of ETG-driven electron thermal transport. In ETG simulations with tokamak parameters, low-k (ITG/TEM) turbulence isotropizes (breaks-up) ETG turbulence and mitigates ETG-driven transport. In ETG simulations with ST parameters, flow shear suppresses low-k turbulence and ETG turbulence saturates in an anisotropic state. Accordingly, observations of ETG anisotropy are most likely in ST plasmas.

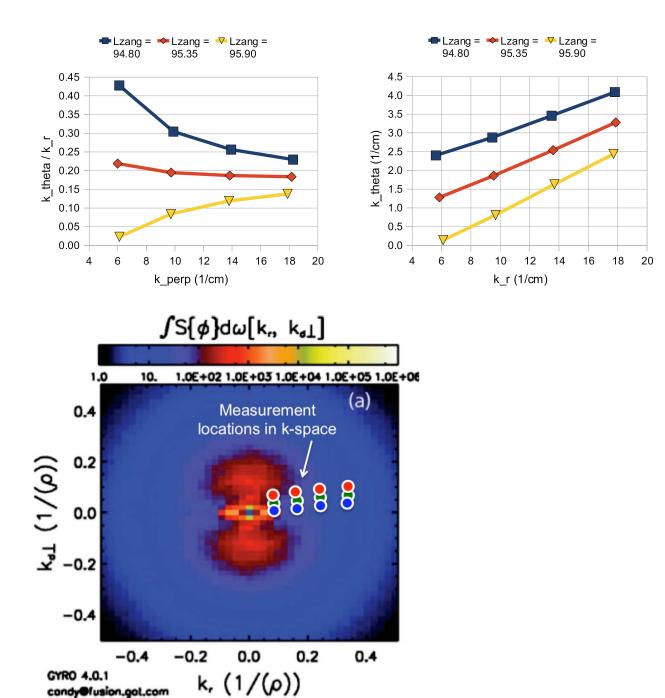
To date, no measurements have documented the isotropy or anisotropy of ETG turbulence in the k_{θ}/k_{r} plane. The NSTX high-k scattering system is the only turbulence diagnostic worldwide capable of investigating this topic. Moving the scattering volume vertically alters the ratio k_{θ}/k_{r} in high-k measurements. For outboard measurements at R~131 cm, the ratio k_{θ}/k_{r} can range from 0.03 to 0.43 in the low-k channel.

Simulations predict anisotropic ETG turbulence with strong ETG-driven transport at moderate magnetic shear values, s-hat ~ 1 . At lower s-hat, ETG isotropizes and ETG-driven transport decreases. To probe the possible transition from anisotropic to isotropic ETG turbulence, the discharges will include an Ip ramp-down late in the discharge to transiently lower s-hat.

3. Experimental run plan

134740 is the baseline shot with Ip = 1.1 MA and Bt = 5.5 kG. NB sources A & B provide 4 MW (40 and 80 ms, respectively), and source C provides an additional 2 MW of early heating (100-200 ms). SPAs at 200 kA minimize n=3 breaking. Run Bay-K LITER to minimize ELMs.

High-k configurations for three probe beam vertical angles $(-4.8^\circ, -5.35^\circ, \text{and } -5.9^\circ)$ are listed below. The associated k-space parameters are also illustrated. The collection mirror horizontal angle is 230.5°. The measurement location is r/a~0.55 and R~131 cm. The r/a position is maintained for all configurations.


Changing configurations will require controlled accesses to adjust exit window vertical angles. The highest priority configurations are -4.8° and -5.9°, as they provide minimum and maximum k_{θ}/k_{r} values. -5.35° is the lower priority configuration because it provides intermediate k_{θ}/k_{r} values.

To investigate the possible transition from anisotropic ETG to isotropic ETG, shots with Ip ramp-downs will occur after successful fixed Ip shots. Ramp downs to 0.8 or 0.9 MA with varying timings will be developed.

This XP will need 1 run day.

Shot matrix	Ip = 1.1 MA & no ramp-down	Ip ramp-down with several ramp timings
PB Z angle -4.8°	×2	~ 5
-5.35°	×2	~ 5
-5.9°	×2	~ 5

PB Z ang	PB X ang	Channel	EW X ang	EW Z ang
-4.8°	90.7°	1	-2.1°	1.8°
		2	-2.6°	1.6°
		3	-2.6°	1.4°
		4	-2.2°	1.2°
-5.9°	90.5°	1	-1.9°	0.7°
		2	-2.3°	0.5°
		3	-2.3°	0.2°
		4	-1.7°	0.0°
-5.35°	90.6°	1	-2.0°	1.2°
		2	-2.4°	1.0°
		3	-2.4°	0.8°
		4	-2.0°	0.6°

4. Required machine, NBI, RF, CHI and diagnostic capabilities

4-6 MW of NBI as per shot 134740; high-k scattering, SPA for EF correction, bay-k LITER

5. Planned analysis

LRDFIT, TRANSP, GS2

6. Planned publication of results

Observations addressing the isotropy of ETG turbulence warrant a PRL.

PHYSICS OPERATIONS REQUEST

TITLE: ETG isotropy

AUTHORS: David Smith

No. **OP-XP-1070**

DATE: Sept. 21, 2010

(use additional sheets and attach waveform diagrams if necessary)

Describe briefly the most important plasma conditions required for the experiment:

MHD activity, if present, needs to be steady-state without bursting modes or fast-ion losses. In the baseline shot 134740, MHD activity was steady-state.

Previous shot(s) which can be repeated: 124889 (4 MW NBI, 700 kA Ip, 5.5 kG TF) Previous shot(s) which can be modified:

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

 I_{TF} (kA): standard 5.5 kG Flattop start/stop (s): see 134740

 I_P (MA): 1.1 MA Flattop start/stop (s): see 134740

Configuration: LSN

Equilibrium Control: **Isoflux** (rtEFIT)

Outer gap (m):Inner gap (m):Z position (m):

Elongation κ : Upper/lower triangularity δ :

Gas Species: **D** Injector(s):

NBI Species: **D** Voltage (kV) **A: 40+ms B: 80+ms C:** 100-200 ms Duration (s):

ICRF: Off

CHI: Off

LITERs: Bay K LITER

EFC coils: usual n=3 Configuration: Odd / Even / Other (attach detailed sheet

DIAGNOSTIC CHECKLIST

TITLE: ETG isotropy AUTHORS: David Smith

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array	\checkmark	
Bolometer – divertor	\checkmark	
CHERS – toroidal		\checkmark
CHERS – poloidal	\checkmark	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic	\checkmark	
Fast ion D_alpha - FIDA	\checkmark	
Fast lost ion probes - IFLIP	1	
Fast lost ion probes - SFLIP	1	
Filterscopes	1	
FIReTIP	\checkmark	
Gas puff imaging	1	
Hα camera - 1D		
High-k scattering		\checkmark
Infrared cameras		
Interferometer - 1 mm	\checkmark	
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism		\checkmark
Magnetics – Flux loops		\checkmark
Magnetics – Locked modes		\checkmark
Magnetics – Pickup coils		\checkmark
Magnetics – Rogowski coils		\checkmark
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors		\checkmark
Mirnov coils – high f.		\checkmark
Mirnov coils – poloidal array		\checkmark
Mirnov coils – toroidal array		\checkmark
Mirnov coils – 3-axis proto.		

No. **OP-XP-1070**

DATE: Sept. 21, 2010

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE		\checkmark
NPA – EllB scanning		
NPA – solid state		
Neutron measurements		\checkmark
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz	\checkmark	
Reflectometer – correlation	\checkmark	
Reflectometer – FM/CW	\checkmark	
Reflectometer – fixed f	\checkmark	
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering		\checkmark
Ultrasoft X-ray arrays	\checkmark	
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		