

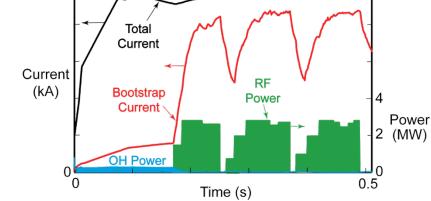
Supported by

XP1009 & XP1010: Low I_p HHFW Heating Experiments

G. Taylor

D. Mueller, J.C Hosea, S. Gerhardt, C. Kessel, B.P. LeBlanc, C.K. Phillips, S. Zweben *PPPL* R. Maingi, P.M. Ryan *ORNL* R. Raman *U. Washington*

> XP Review LSB 318 February 16, 2010


HHFW Heating of Low I_p Plasmas Since 2005 Show Promise, But Also Problems with Plasma Control

2005: (XP-521)

- ➢ 60-85% bootstrap current in HHFW heated (k_φ = -14 m⁻¹) H-mode D₂ plasmas at I_p = 250 kA $250 \int_{10}^{250} \int_{10}^{10} \int$
- Transiently produced
 - $V_{loop} \le 0$ and $dI_{OH}/dt \approx 0$

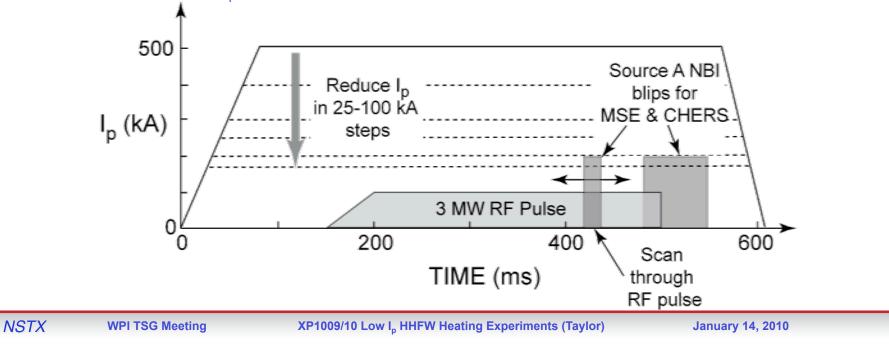
2007: (XP-731)

- Problem with rtEFIT control at I_p = 250 kA, used 300 kA
- > Many trips with $k_{\phi} = 14 \text{ m}^{-1}$

> Up to 2.7 MW of $k_{\phi} = -8 \text{ m}^{-1}$ heating, produced transient H-mode

2008: (XP-817)

Li conditioning reduced edge density, improving HHFW core heating, even in CHI start-up plasmas with n_e(0) ~ 4x10¹⁸m⁻³

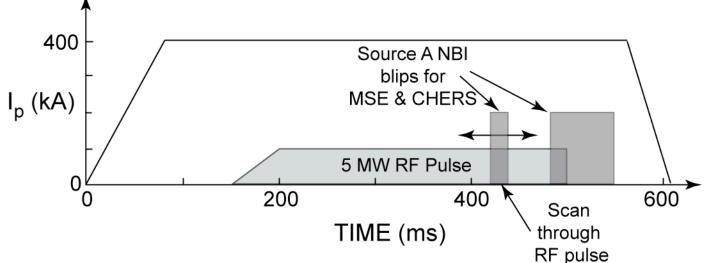

Low I_p HHFW experiments in WPI TSG contribute to R10-2 milestone in 2010:

- > **XP-1009:** HHFW Heating of Low $T_e(0)$, I_p Plasmas (formerly XP-920)
- XP-1010: Sustainment of HHFW-Driven 100% Non-Inductive H-Mode Plasmas

XP-1009: HHFW Heating of $I_p \sim 200$ kA Plasmas - I

- Experimental Approach/Plan:
 - Setup D₂ plasma with $I_p = 500 \text{ kA}$, $B_T = 5.5 \text{ kG}$ [modify 135260], and add $k_{\phi} = 14 + 18 \text{ m}^{-1} \text{ RF}$ power and to ~ 3 MW, while adjusting Li evaporation rate, gas injection rate and outer gap to optimize HHFW heating efficiency (5-10 shots)
 - > Reduce I_p in 100 kA steps to 300 kA while coupling $k_{\phi} = -8 \text{ m}^{-1} \text{ RF}$ (10 shots).

> Repeat with
$$k_{\phi} = -8 \text{ m}^{-1} \text{ RF}$$
 (10 shots)


XP-1009: HHFW Heating of $I_p \sim 200$ kA Plasmas- II

- Experimental Approach/Plan (cont.):
 - ➢ Reduce I_p from 300 kA to ≤ 200 kA in 25-50 kA steps, while maintaining plasma position control so outer gap is 5-10 cm (5-10 shots)
 - > At lowest I_p achieved with good plasma control, couple $k_{\phi} = 14 + 18 \text{ m}^{-1} \text{ k}$ $k_{\phi} = \pm 8 \text{ m}^{-1}$ power to ~ 3 MW (15 shots)
 - > Perform n_e scan with $k_{\phi} = -8 \text{ m}^{-1}$ heating (5-10 shots)
 - If sufficient CD is observed, adjust RF pulse to start as soon as I_p reaches flattop, then use open loop OH programming to provide no ohmic drive after I_p reaches minimum value (< 200 kA at approximately 25 ms) (10-15 shots)</p>
- 1.5 run days (1 day SFSU & 0.5 days WPI)

XP-1010: Sustainment of HHFW-Driven 100% Non-Inductive H-Mode- I

- Brief Description:
 - > Couple ~ 5 MW of HHFW power into an I_p ~ 300-400 kA deuterium plasma
 - Drive plasma into H-mode and use RF heating to generate ~ 100% bootstrap current
- Background:
 - > 60-85% bootstrap fraction already achieved with ~ 2.5 MW of k_{ϕ} = 14 + 18 m⁻¹ RF power in an I_p = 250 kA plasma (XP-521)
 - Based on past experiments and modeling 5 MW should be sufficient power to drive plasma into a fully non-inductive H-mode
 - New double end-fed antenna should be capable of coupling ~ 5 MW
 - LLD + LITER's should provide control of edge density for better RF coupling
 - Preceded by XP-1009, and should be run only when ~ 5 MW of RF power has been reliably coupled into deuterium plasma

XP-1010: Sustainment of HHFW-Driven 100% Non-Inductive H-Mode - II

- Experimental Approach/Plan:
 - Setup D₂ plasma with I_p ~ 300-400 kA, B_T = 5.5 kG (5 shots) [use shot from XP-1009]
 - Add 5 MW of k_o = 14 + 18 m⁻¹ heating, adjusting Li evaporation, gas injection rate and outer gap to optimize HHFW heating to obtain L-H transition and H-mode sustainment (10 shots)
 - Repeat with -8 m⁻¹ heating (10 shots)
- 1 run day

XP-1009/10: Requirements & Analysis

- Diagnostics & Machine:
 - > Thomson scattering, MSE, CHERS, SOL reflectometer
 - > Need LITERs, but LLD can be maintained in "cold", solid state
 - Source A NBI blips at 90 keV
- Analysis:
 - GENRAY/CQL3D & TRANSP/TORIC simulations
- Planned Publication:
 - > Nuclear Fusion or Physics of Plasmas
 - Contribute to IAEA presentations