

Supported by

XP1062: NTV steady-state offset velocity at reduced torque

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

V1.0

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, J. Hosea²,
M. Podesta², G. Taylor², K.C. Shaing³, J.M. Bialek¹,
S.P. Gerhardt², W. Houlberg⁴, B.P. LeBlanc², J.E. Menard², J.K. Park², Y.S. Park¹, et al.

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Wisconsin ⁴ITER

> NSTX Macrostability TSG Review Friday May 13th, 2011

PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

XP1062: NTV steady-state offset velocity at reduced torque with HHFW

Motivation

- Measure and understand neoclassical toroidal viscosity (NTV) steady-state offset velocity physics to gain confidence in extrapolation of the effect to future devices
 - Background: NSTX low ω_{ϕ} NTV experiments with co-NBI + non-resonant magnetic braking do not show NTV steady-state offset velocity to be in the counter-I_p direction (e.g., shown in DIII-D (Garofalo, PRL 2008)
 - Steady-state offset velocity direction depends more generally on ion/elec. transport fluxes

Goals

- Complete XP1062, partially run in 2010 (excluded HHFW portion of shot list)
- Determine NTV offset rotation in plasmas with no NBI torque (HHFW heated)
 - Use demonstrated technique to measure ω_{ϕ} in RF plasmas
 - Use n = 3 applied field, compare to results with n = 2 applied field
- Determine if low ω_{ϕ} (low ω_{E} superbanana plateau (SBP) regime) can be reproduced during the NBI portion of these discharges with non-resonant braking
 - Determine changes in torque, and torque balance with HHFW + NBI
 - Can attempt to measure NTV steady state offset velocity this way as well when varying nonresonant applied field magnitude

Addresses

- NSTX Milestone IR(12-1), key data to complete XP1062
- ITPA MDC-12

XP1062 will focus on measuring NTV offset velocity, leveraging "joint" experiment with KSTAR

- Understanding important for NSTX V_o control, NSTX-U, and future devices
- Part of a "joint experiment"
 - Experiment MP2011-03-09-001 proposed and allocated run time on KSTAR
 - Will attempt n = 2 magnetic braking
 - Will focus on long-pulse torque balance (unique to KSTAR)
 - NSTX/KSTAR comparison will allow largest variation of aspect ratio
 - Larger than NSTX/DIII-D comparison
 - "Joint" experiment will give greater input to ITPA MDC-12

(From original presentation) XP1062 aims at next-step goals from XP933, allowed by LLD, RF operation

Goals / Approach

Mostly completed

- Compare magnetic braking with largest variation of v_i^* (using LLD if working)
 - Target a comparison of two conditions: low vs. high v_i*
 - Concentrate on new low v_i^* condition
 - Compare to past braking XPs if high v_i^* condition is difficult to produce
- Generate greater variation of key parameter $(v_i/\epsilon)/|nq\omega_E|$
 - Operate some shots with 1 NBI source (higher ω_{E})
 - Mostly run 2 3 NBI sources generate lowest v_i , vary ω_E with braking as before
 - [•] Concentrate on low $\omega_{\rm E}$ to further examine superbanana plateau regime/theory
 - Additional $nq\omega_E$ variation possible by comparing n = 2 vs. 3 if time allows

New

- Determine NTV offset rotation
 - Standard approach: attempt to observe offset by operating at near-zero ω_{ϕ}
 - Consider new approach using RF (based on RF XPs from 2009)
 - \square Generate ω_{ϕ} with RF at highest T_i, W_{tot} possible, diagnose similar to Hosea/Podesta 2009
 - □ Repeat for different *initial* values of n = 2, 3 braking field, determine if initial ω_{ϕ} changes
 - □ Note that if NTV offset is indeed only in counter- I_p direction, the ω_{ϕ} profile will change (it's presently counter in core, co at the edge)

Zero input torque ω_{ϕ} profile diagnosed in 2009 RF XPs

Determine NTV offset rotation – RF approach

- Generate ω_φ with RF at highest T_i, W_{tot} possible, diagnose similar to Hosea/Podesta 2009
- Repeat for different *initial* values of n = 3 (or 2) field, determine if pre-NBI ω_φ changes
- Note that if NTV offset is indeed only in counter-I_p direction, the ω_φ profile will change (it's presently counter in core, co at the edge
- □ Attempt to maintain nearzero ω_{ϕ} during NBI phase

NSTX

 New way to enter/sustain low ω_E SBP regime

- Mechanism causing this edge effect not understood, but may point to edge ion loss
- RF apparently provides a drag on core plasma rotation as well

□ Since SBP regime yields maximum NTV

- Entering it by lowering ω_{ϕ} yielded an observed increase in NTV without mode locking (2009-10)
- Conversely, attempt to measure decrease in NTV as SBP regime is exited
- **Forum allocation:** 0.5 run days

XP1062: NTV steady-state offset velocity at reduced torque – shot plan

Task Num	Number of Shots		
1) Generate low and high collisionality comparison shots and apply braking	Monthy or	mplo	tod
(use ~fiducial targets established in 2010, 1-3 NBI sources)	wostry completed		leu
A) (if possible) Operate "high collisionality" comparison shot	:	2	
B) Operate low collisionality target shot (3 NBI sources, then 2)		2	
C) Apply n = 3 braking in low and high collisionality targets		2	
D) (optionally) apply n = 1 EFC 75ms filter in low collisionality plasma (comparison)		1	
2) Generate greater variation of $(v_i/\epsilon)/ nq\omega_E $			
A) Early n = 3 application (t ~ 0.2 s), vary n = 3 current to produce two different quasi-steady	ω_{E} levels		
(high beta, high T _i condition); step n = 3 currents from two different quasi-steady levels,			
reach quasi-steady state with 2 different braking currents; more than one step/shot if lor	ng pulse	4	
B) (if possible) Rerun most desirable case from 2A) in high collisionality target	:	2	
C) Concentrate on generating low ω_{ϕ} (low ω_{E}) in SBP regime by varying braking waveform		4	
D) Operate with one NBI source for highest ω_{ϕ} (high ω_{E})	:	2	New
3) Determine NTV offset rotation			
A) Comparison/supplement shots from step 2 to determine by $\omega_{\phi-offset} = \omega_{\phi} - K/\delta B^2$) or direct	observation	3	
B) Generate RF target (high temperature desired), adding NBI later in shot (ω_{ϕ} diagnosis, etc	c.) (5	
C) Rerun 3B) with three different braking field magnitudes	!	5	
D) Rerun 3B) with n = 2 applied field configuration		5	
Total (new)		18	

Suggested run period: aim for the 2nd (of 3) HHFW run period planned by Taylor / Hosea (~10/11)

(III) NSTX

V1.0

XP1062: Schematic heating and applied field field waveforms

V1.0

XP1062: NTV steady-state offset velocity at reduced torque – Diagnostics, etc.

Required diagnostics / capabilities

- RWM coils in standard n = 1,3 configuration, n = 2 configuration
- □ RF heating capability
- CHERS toroidal rotation measurement
- Thomson scattering
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
- Diamagnetic loop
- Desired diagnostics
 - USXR and ME-SXR
 - FIReTip
 - Fast camera