

XP-1160: Low Plasma Current, Fully Non-Inductive, HHFW H-Mode Plasmas

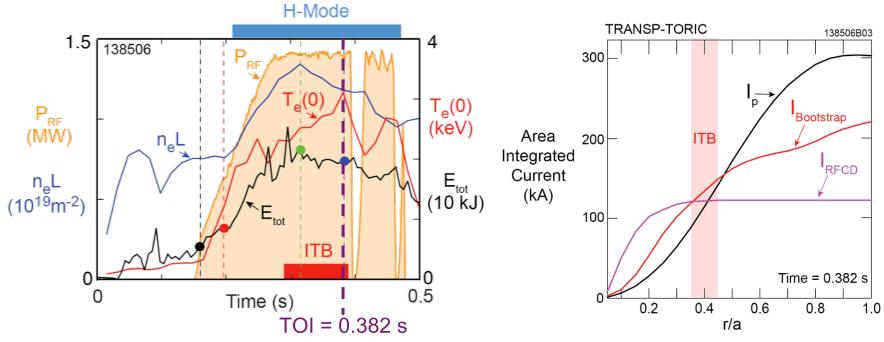
G. Taylor

D. Mueller, S. Gerhardt, J. C. Hosea, B. P. LeBlanc, C. Kessel, C. K. Phillips, S. Zweben

PPPL

R. Maingi, P. M. Ryan

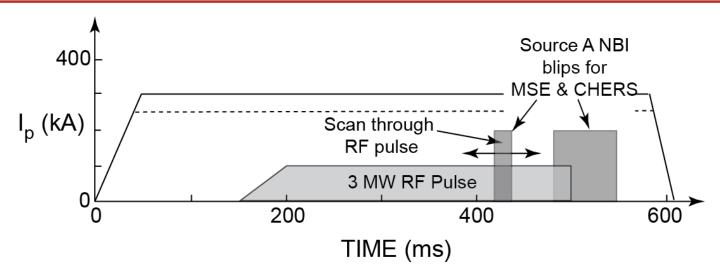
ORNL


R. Raman

U. Washington

SFPS TSG Meeting May 17, 2011

XP1160 Low I_p Fully Non-Inductive HHFW H-Modes: Overview/Justification


- I_p = 300 kA HHFW H-mode in XP-1009 achieved f_{NI} ~ 65% with P_{RF} = 1.4MW:
 - > ITB formed during H-mode
 - Positive feedback between ITB, high T_e(0) and RF CD

- Increase P_{RF} to ~ 3-4 MW to achieve f_{NI} ~ 100%
 - Some work may be needed to further improve plasma position control
 - Repeat at I_p = 250 kA

XP1160 Low I_p Fully Non-Inductive HHFW H-Modes: Run Plan - I

- Clamp OH coil current, instead of feeding back on Ip
- Shots without HHFW power will have decaying Ip
- When HHFW power is applied I_p will be sustained or decay more slowly depending on the amount of RF and bootstrap current drive
- May need some ohmic discharges with I_p feedback on to gain estimate of the OH current needed to minimize plasma motion at low I_p
- Experiment requires 1-1.5 days to complete

XP1160 Low I_p Fully Non-Inductive HHFW H-Modes: Run Plan - II

- 1. Setup $I_p = 300$ kA discharge similar to shot 138506
- 2. Once pulse is reproducible, add k_{ϕ} = -8 m⁻¹ (-90° phasing) power, using antenna settings from 138506. Increase P_{RF} to 3-4 MW, while adjusting antenna tuning, Li evaporation rate and gas injection rate to optimize RF coupling. Measure q(r) & T_i with source A NBI blips [10-15 shots]
- 3. Reduce I_p to 250 kA, couple 3-4 MW of k_{ϕ} = -8 m⁻¹ power and measure q(r) & T_i with source A NBI blips [10-15 shots]
- 4. At I_p = 300kA, move the RF pulse start time as early as possible in time and obtain data at 1.5 and 3 MW RF power levels [4-6 shots], with a 20ms NBI blip applied 100 to 150ms after start of TF flat-top. For FY12, increase the RF power level to >4 MW [9 shots]
- 5. If time permits repeat steps 1 and 2 with -60° antenna phasing

Operational Requirements: $P_{RF} = 3-4$ MW with -60° & -90° phasing and rtEFIT isoflux control of outer gap. 90 keV source A blips

Key Diagnostics: MPTS, SOL reflectometry, ERD, CHERS, MSE, Visible & IR camera imaging of antenna & divertor

Analysis/Modeling: GENRAY-ADJ, TRANSP-TORIC

