Princeton Plasma Physics Laboratory NSTX Experimental Proposal					
Title: Comparison of D Molyb	iverted Plasmas Incident o denum, and Graphite Surf	n Lithiato aces	ed LLD,		
OP-XP-1134	Revision: 0 Effective Date: June 30, 2011 (Approval date unless otherwise stipulated) Expiration Date: June 30 2013 (2 yrs. unless otherwise stipulated)				
	PROPOSAL APPROVA	ALS			
Responsible Author: H. Ku	igel, V. Soukhanovskii (Deputy)	Date		
ATI – ET Group Leader: (C. H. Skinner		Date		
RLM - Run Coordinator: S	S. Sabbagh		Date		
Responsible Division: Exp	erimental Research Operations				
RESTR (App	ICTIONS or MINOR MOI proved by Experimental Research	DIFICAT Operation	IONS s)		

NSTX EXPERIMENTAL PROPOSAL

TITLE: Compa	rison of Diverted Plasmas Incident on Lithiated LLD,	No. OP-XP-1134
Moly	bdenum, and Graphite Surfaces	
AUTHORS:	H. Kugel, V. Soukhanovskii (Deputy)	DATE: 6/15/2011

1. Overview of planned experiment

This XP is a comparison of diverted plasmas with strike points incident on lithiated LLD, molybdenum tiles, and graphite tile surfaces. This will allow resolution of LLD 2010 open issues and completion of analysis described in the recent IAEA2010, and ISFA2011 papers.

2. Theoretical/ empirical justification

This XP will allow resolution of LLD 2010 open issues and the completion of analysis described in the recent IAEA-2010, and ISFA-2011 papers.

3. Experimental run plan

The following 4 scans are proposed:

1. LSN strike-pts on Mo-LLD and Mo IBD-tile.

[REF: 142505, 16 shots]

2 Outboard Divertor strike-pt on Mo-tile, Inboard Divertor strike-pt on ATJ. [REF: 139571 10 shots]

3. Snowflake-minus Outboard Divertor strike-pt on Mo-tile.

[REF: 139497 [3 shots]

4. Standard Inner Divertor strike-pts on ATJ. REF: 139630 [3 shots]

Refer to Shot Table 1.

Run Day	Shot No.	Estimated	Estimated	ISP	OSP	Fueling
		Bulk T°C	FF T°C			
1	1	35		Mo (50cm)	LLD (77cm)	constant
1	2	45		Mo (50cm)	LLD (77cm)	constant
1	3	55	166	Mo (50cm)	LLD (77cm)	constant
1	4	65		Mo (50cm)	LLD (77cm)	constant
1	5	75	181	Mo (50cm)	LLD (77cm)	constant
1	6	85	224	Mo (50cm)	LLD (77cm)	constant
1	7	95	261	Mo (50cm)	LLD (77cm)	constant
1	8	105	301	Mo (50cm)	LLD (77cm)	constant
1	9	115		Mo (50cm)	LLD (77cm)	constant
1	10	125		Mo (50cm)	LLD (77cm)	constant
1	11	135		Mo (50cm)	LLD (77cm)	constant
1	12	145		Mo (50cm)	LLD (77cm)	constant
1	13	155		Mo (50cm)	LLD (77cm)	constant
1	14	165		Mo (50cm)	LLD (77cm)	constant
1	15	175		Mo (50cm)	LLD (77cm)	constant
1	16	185		Mo (50cm)	LLD (77cm)	constant
1	17			ATJ	Mo(50cm)	constant
1	18			LTA	Mo(50cm)	constant
1	19			LTA	Mo(50cm)	constant
1	20			LTA	Mo(50cm)	constant
1	21			LTA	Mo(50cm)	constant
1	22			LTA	Mo(50cm)	constant
1	23			LTA	Mo(50cm)	constant
1	24			LTA	Mo(50cm)	constant
1	25			LTA	Mo(50cm)	constant
1	26			LTA	Mo(50cm)	constant
1	27			Snowflake-	Mo(50cm)	constant
1	28			Snowflake-	Mo(50cm)	constant
1	29			Snowflake-	Mo(50cm)	constant
1	30			AJT	ATJ	constant
1	31			AJT	ATJ	constant
1	32			AT J	ATJ	constant

Shot Table 1.

• If time permits, following the constant fueling scan, do:

1) divertor carbon source reduction with a small gas puff,

2) divertor OSP detachment with a higher gas puff (probably can get enough information in \sim 5-7 shots)

Run Day	Shot No.	Estimated	Estimated	ISP	OSP	Fueling
		Bulk T°C	FF T°C			
1.5	1	35		LLD (77cm)	LLD (77cm)	increase
1.5	2	45		LLD (77cm)	LLD (77cm)	increase
1.5	3	55	166	LLD (77cm)	LLD (77cm)	increase
1.5	4	65		LLD (77cm)	LLD (77cm)	increase
1.5	5	75	181	LLD (77cm)	LLD (77cm)	increase
1.5	6	85	224	LLD (77cm)	LLD (77cm)	increase
1.5	7	95	261	LLD (77cm)	LLD (77cm)	increase
1.5	8	105	301	LLD (77cm)	LLD (77cm)	increase
1.5	9	115		LLD (77cm)	LLD (77cm)	increase
1.5	10	125		LLD (77cm)	LLD (77cm)	increase
1.5	11	135		LLD (77cm)	LLD (77cm)	increase
1.5	12	145		LLD (77cm)	LLD (77cm)	increase
1.5	13	155		LLD (77cm)	LLD (77cm)	increase
1.5	14	165		LLD (77cm)	LLD (77cm)	increase
1.5	15	175		LLD (77cm)	LLD (77cm)	increase
1.5	16	185		LLD (77cm)	LLD (77cm)	increase

After LLD Cooldown and Lithium Solidifies

After cool	17	55	166	LLD (77cm)	LLD (77cm)	Ibid #16
	18	65		LLD (77cm)	LLD (77cm)	Ibid #16
	19	75	181	LLD (77cm)	LLD (77cm)	Ibid #16

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Perform OP-XMP-71, "NSTX Start-up Commissioning and Evaluation Using Lithium Coating Only", and XP-1133 until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, $t_e \ge 50ms$, Se=200kJ.

Diagnostics are required for the following investigations:

- 3.1 How does the core D content change as the divertor substrate is changed?
- 3.2 How does the core C^{6+} content change as the carbon sputtering term is changed?
- 3.3 How much of the electron density rate of rise is due to the divertor sputtering source?
- 3.4 How do Li, CII, CIII, OII, Mo, Prad waveforms vary during the discharge as the surface heats?
- 3.5 How do the Fast IR front face temperature waveforms change for the different lithiated substrates?
- 3.6 Under quiescent Dα conditions, can local recycling coefficients be measured using LP array Isat/Da ratios?
- 3.7 How do ELM stability characteristics change as sputtering and edge fueling change?
- 3.8 How do the global wall pumping characteristics change as the lithiated substrate changes?

5. Planned analysis

OEDGE, TRANSP, UEDGE, etc.

6. Planned publication of results

PSI2012, IAEA 2012, Nucl. Fusion or POP.

PHYSICS OPERATIONS REQUEST

TITLE:	Comparison of Diverted Plasmas Incident on Lithiated	No. OP-XP-1134
	LLD, Molybdenum, and Graphite Surfaces	
AUTHOR	RS: H. Kugel, V. Soukhanovskii (Deputy)	DATE: 6/15/2011

Brief description of the most important operational plasma conditions required: Perform OP-XMP-71, "NSTX Start-up Commissioning and Evaluation Using Lithium Coating Only", and XP-1133 until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, $t_e \ge 50ms$, Se=200kJ.

	h h				
Previous shot(s) whic 1 L SN strike_pts	on Mo-LI D and Mo IBD-ti	le			
I. LSIV SURC-pts on WO-LLD and WO IDD-the. [REF: 142505, 16 shots]					
2 Outboard Diver	tor strike-pt on Mo-tile, Inb	oard Diverto	or strike-pt on	ATJ.	
		[F	REF: 139571,	10 shots]	
3. Snowflake-min	us Outboard Divertor strike	-pt on Mo-ti	ile.	• • • •	
1 Stondard Imag	Discontan stuiles ats on ATI	4] T	KEF: 139497, 3 DEE: 130630	3 shots] 2 shots]	
4. Standard Inner	Divertor strike-pts on AIJ.	, Lt	KEF: 139030,	5 snotsj	
Previous shot(s) whic	ch can be modified: Any of	the above a	as required.		
Machine condition	ns (specify ranges as ap	opropriate	, strike out i	napplicable cases)	
I_{TF} (kA):	Flattop start/sto	p (s):			
I _P (MA):	Flattop start/sto	p (s):			
Configuration: Lim	niter / DN / LSN / USN				
Equilibrium Contro	ol: Outer gap / Isoflux ((rtEFIT) /	Strike-point	t control (rtEFIT)	
Outer gap (m):	Inner gap (m)	•	Z pc	osition (m):	
Elongation:	Triangularity	(U/L):	OSP	radius (m):	
Gas Species:	Injector(s):				
NBI Species: D V	Voltage (kV) A:	B:	C:	Duration (s):	
ICRF Power (MW): Phase betw	een straps	s (°):	Duration (s):	
CHI: Off / On	Bank capacitance (m	ıF):			
LITERs: Off / Or	n Total deposition	rate (mg/n	nin):		

LLD: Temperature (°C):

EFC coils: Off/On Configuration: **Odd / Even / Other (***attach detailed sheet***)**

DIAGNOSTIC CHECKLIST

TITLE: Comparison of Diverted Plasmas Incident on Lithiated LLD, Molybdenum, and Graphite Surfaces

AUTHORS: H.kugel, V. Soukhanovskii (Deputy)

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		\checkmark
Bolometer – midplane array	\checkmark	
CHERS – poloidal	\checkmark	
CHERS – toroidal	\checkmark	
Dust detector		\checkmark
Edge deposition monitors		\checkmark
Edge neutral density diag.		\checkmark
Edge pressure gauges	\checkmark	
Edge rotation diagnostic	\checkmark	
Fast cameras – divertor/LLD	\checkmark	
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging – divertor		\checkmark
Gas puff imaging – midplane		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		\checkmark
Infrared cameras	\checkmark	
Interferometer - 1 mm		\checkmark
Langmuir probes – divertor	\checkmark	
Langmuir probes – LLD	\checkmark	
Langmuir probes – bias tile		\checkmark
Langmuir probes – RF ant.		\checkmark
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors	\checkmark	
Mirnov coils – high f.		\checkmark
Mirnov coils – poloidal array		\checkmark
Mirnov coils – toroidal array		\checkmark
Mirnov coils – 3-axis proto.		\checkmark

Diagnostic	Need	Want
MSE		
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		\checkmark
Plasma TV	\checkmark	
Reflectometer – 65GHz		\checkmark
Reflectometer – correlation		\checkmark
Reflectometer - FM/CW		\checkmark
Reflectometer – fixed f		\checkmark
Reflectometer – SOL		\checkmark
RF edge probes		
Spectrometer – divertor	\checkmark	
Spectrometer – SPRED	\checkmark	
Spectrometer – VIPS	\checkmark	
Spectrometer – LOWEUS	\checkmark	
Spectrometer – XEUS	\checkmark	
SWIFT – 2D flow		\checkmark
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays		\checkmark
Ultrasoft X-rays – bicolor		\checkmark
Ultrasoft X-rays – TG spectr.		\checkmark
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		\checkmark
X-ray crystal spectrom V		\checkmark
X-ray tang. pinhole camera		\checkmark

No. **OP-XP-1134** DATE: **6/15/2011**