Princeton Plasma Physics Laboratory NSTX Machine Proposal				
Title: Software Test for n=1 R	RWM and Er	ror F	ield Cont	rol with 6 SPAs
OP-XMP-72 Effective Expiration (2 yrs. unles)		Date: n Date: s otherwise stipulated)		
Р	rocedure Ap	prova	ls	
Responsible author: Stefan Gerhar	dt			Date
ATI (NSTX Physics Ops): D. Muel	ler			Date
RLM (NSTX Expt. Research Ops):	M. Bell			Date
Responsible Division: Experimen	ntal Research	Ope	rations	
Pro	cedure Reque designated by	irem RLM	ents	
NSTX Work Permit	NSTX Work Permit T-MOD (OP-AD-03)			.D-03)
Independent Review	ES&H Review			
RESTRICTIONS AND MINOR MODIFICATIONS Approved by RLM				

REVIEWERS (designated by RLM)			
Organization/Position	<u>Name</u>	Signature	
ATI	D. Mueller		
Test Director			
Independent Reviewer			
NB system			
RF systems			
FCPC systems			
Diagnostics			

TRAINING (designated by RLM)				
Training required: No Ves Instructor				
Personnel (group, job title or individual name)	Read Only	Instruction	Hands- On	
RLM				

NSTX MACHINE PROPOSAL

TITLE:Software Test for n=1 Proportional ControlNo.OP-XMP-78AUTHORS:S.P. GerhardtDATE: 7/11/2011

1. Overview:

The goal of this XP is to test the PCS code related to RWM control with 6 SPA subunits

These code modifications were made within the mode-ID category (which identifies the amplitude and phase of the n=1 perturbation), and within the RWM category (which generates the actual power supply current requests).

These code modifications will be tested off-line, both on old data and on the 2nd PCS machine during initial plasma operations. It will then be necessary to test the code changes using real plasma discharges.

In particular, the XMP will test:

- The application of pre-programmed currents during plasma operations.
- Feedback n=1 control with the B_P and B_R sensors.
- Feedforward n=1 OH x TF correction.

It is hoped that the outcome of this XMP will be a qualified n=1 DEFC/RWMF + n=3 EFC configuration that can be loaded into any subsequent discharge.

2. Justification:

PPPL/NSTX installed an additional SPA during the outage in the center of the FY-11 run. The use of the three additional subunits, and reconfiguration of the coil/subunit mapping, has required that the PCS code for n=1 control be rewritten. Given the importance of this particular control capability, it is desirable to test it with a short dedicated XMP.

3. Plan:

3.1: Pre-programmed current control (1-2 shots).

Load and run the reference discharge, likely a 2011 morning fiducial. Add n=3 correction waveforms as in the following table. Ramp the currents on from 0.25 to 0.3 seconds

SPA #	SPA Request Level
1	+250
2	-250
3	+250
4	-250
5	+250
6	-250

This should produce positive currents (in the physics sense) in RWM coils 2, 4, and 6, and negative currents in coils 1, 3, and 5; these should be the polarities in the "IRWM_X" signals (X=1,2,3,4,5,6). The RWMX_I signals should have the polarity consistent with the above table.

Note that this step may be completed during the startup XMP.

Shot number(s)

3.2: n=1 RWM control with B_p sensors

3.2.1: (4 shots) Development with n=1 feedback with B_P sensors.

Repeat target shot with n=1 RWM control turned on. Timing of waveforms is as per shot 133964.

 B_P Feedback: Turned on at t=0.3.

 B_p Feedback Gain: Ramping from 0 to a final value from t=0.35 to t=0.4.

B_P Feedback Phase of 250, followed by 70 (historical good and bad phases).

B_P Low-Pass Filter Time Constant: Ramping to 0.001 sec from t=0.36 to t=0.41.

 $B_{\rm P}$ sensor re-zero during time window 0.33 < t <0.34.

B _p Gain	B _p Phase	Shot Number(s)
0.5	250	
1.0	250	
1.0	70	

3.2.2: (4 shots) Add with n=1 feedback with B_R sensors.

Using best B_P feedback configuration, add B_R feedback with the same timing, and the following parameters. The historical result is that this difference in feedback phase should result in a stark difference in plasma performance

B _R Gain	B _R Phase	Shot Number(s)
0.75	180	
1.5	180	
1.5	0	

Repeat the target plasmas discharge, but turn off all pre-programmed and n=1 feedback currents. Then use the OHxTF correction waveforms from shot 138101.

The form of the SPA current request for the ith coil is:

$$I_{SPA,i} = D_i \Big[G_{S,i} LPF(I_{OH} \cdot I_{TF}; \tau) + G_{A,i} LPF(I_{OH} \cdot I_{TF}; \tau) \Big]$$

The governing parameters of the OHxTF algorithm are three numbers per subunit: D_i , $G_{S,i}$, $G_{A,i}$. There were thus 9 numbers previously, and 18 numbers when the 2nd SPA is included.

Due to a remapping of the SPA->RWM coil connections when going from 3 to 6 subunits, the reload of the parameters will need to be done as follows:

Copy this from old shot/algorithm	into the new shot/algorithm
D_2	D ₁
D_3	D ₂
D_1	D_3
$-1 \cdot D_2$	D_4
$-1 \cdot D_3$	D_5
-1·D ₁	D_6
G _{s.2} (=8.8e-7)	G _{s.1}
$G_{s,3}$ (=5.9e-7)	G _{s,2}
$G_{s,1}(=1.48e-6)$	G _{S,3}
$G_{s,2}(=8.8e-7)$	$G_{S,4}$
G _{S,3} (=5.9e-7)	G _{5,5}
$G_{s,1}$ (=1.48e-6)	$G_{S,6}$
$G_{A,2}(=-4e-8)$	$G_{A,1}$
$G_{A,3}(=2.8e-7)$	G _{A,2}
$G_{A,1}$ (=3.2e-7)	$G_{A,3}$
$G_{A,2}(=-4e-8)$	$G_{A,4}$
$G_{A,3}(=2.8e-7)$	$G_{A,5}$
$G_{A,1}(=3.2e-7)$	G _{A,6}

The RWM current waveforms should be compared to those from 138101. There will be some difference, as the OH current evolution may be somewhat different. However, the polarities, time-evolution, and approximate magnitudes (especially neat t=0) should be comparable.

Shot number(s)

4. Required machine, beam, ICRF and diagnostic capabilities:

Capability to run the target shot, which is likely a 2011 morning fiducial discharge, with at least 4 MW of neutral beam power. The achievable β_N should be ~4 or greater.

Shot number of reference shot

The "tmf" and "miu" algorithms should have been thoroughly tested using the background computer before this XMP is completed. In particular, the proper calculation of the "AC" and "OH×TF" compensations should have been verified against off-line codes. The resulting mode amplitudes and phases must compare favorably to those from off-line analysis. The basic functions of the TMF algorithm must also have been correctly benchmarked by comparing realtime calculations on the backup computer to those from off-line calculations.

5. Sign off at run time:

5.1 Permission to Proceed:

Physics Operations Head

5.2 Successful completion of tests

Cognizant Physicist/Test Director

5.3 Documentation of results:

Documentation of the results completed, attached to proposal and sent to Ops. Center with copies to Cognizant Physicist and Head of Physics Operations.

Cognizant Physicist/Test Director

PHYSICS OPERATIONS REQUEST

TITLE:Software Test for n=1 Proportional ControlAUTHORS:S.P. Gerhardt

Previous shot(s) which can be repeated: Any morning fiducial

No. **OP-XMP-78** DATE: **7/11/2011**

(use additional sheets and attach waveform diagrams if necessary)

Brief description of the most important operational plasma conditions required:

We need the standard 900 kA morning fiducial shot to be running out to ~0.8 seconds. It should be achieving β_N ~4

We also need 6 subunit operation of the SPAs to be operational, and the TMF algorithm to be installed in the running PCS implementation.

Previous shot(s) which can be modified: Parts of 133964 & 138101 can be used.

Machine conditions(specify ranges as appropriate, strike out inapplicable cases) I_{TF} (kA):0.45 TFlattop start/stop (s):0/1.3 I_P (MA):0.9Flattop start/stop (s):0.2/1.2Configuration:LSNrtEFIT controls:IsofluxOuter gap (m):0.1Inner gap (m):0.05Z position (m): -0.02 - 0.0Elongation:2.3Triangularity (U/L):0.7/0.7OSP radius (m): ~0.35Gas Species:DInjector(s):LFS & HFSNBI Species:D Voltage (kV)A: 90B: 90C: 70Duration (s):1.0ICRF Power (MW):0Inter-strap phase (°):NADuration (s):NA			
I_{TF} (kA): 0.45 TFlattop start/stop (s): 0/1.3 I_p (MA): 0.9Flattop start/stop (s): 0.2/1.2Configuration: LSNrtEFIT controls: IsofluxOuter gap (m): 0.1Inner gap (m): 0.05Z position (m): $-0.02 - 0.0$ Elongation: 2.3Triangularity (U/L): 0.7/0.7OSP radius (m): \sim 0.35Gas Species: DInjector(s): LFS & HFSNBI Species: DVoltage (kV) A: 90B: 90C: 70Duration (s): 1.0ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NA	Machine conditions (spe	cify ranges as appropriate, strik	e out inapplicable cases)
I_p (MA): 0.9 Flattop start/stop (s): 0.2/1.2 Configuration: LSNrtEFIT controls: IsofluxOuter gap (m): 0.1 Inner gap (m): 0.05 Z position (m): $-0.02 - 0.0$ Elongation: 2.3 Triangularity (U/L): $0.7/0.7$ OSP radius (m): \sim 0.35 Gas Species: D Injector(s): LFS & HFSNBI Species: D Voltage (kV) A: 90B: 90C: 70 Duration (s): 1.0ICRF Power (MW): 0 Inter-strap phase (°): NADuration (s): NACHI: OffBank capacitance (mE): NA	I_{TF} (kA): 0.45 T	Flattop start/stop (s): 0/1.3	
Configuration: LSN rtEFIT controls: IsofluxOuter gap (m): 0.1Inner gap (m): 0.05Z position (m): -0.02 – 0.0Elongation: 2.3Triangularity (U/L): 0.7/0.7OSP radius (m): ~0.35Gas Species: DInjector(s): LFS & HFSNBI Species: DVoltage (kV) A: 90B: 90C: 70Duration (s): 1.0ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NA	$I_{p}(MA): 0.9$	Flattop start/stop (s): 0.2/1.2	
rtEFIT controls: IsofluxOuter gap (m): 0.1Inner gap (m): 0.05 Z position (m): -0.02 - 0.0Elongation: 2.3Triangularity (U/L): 0.7/0.7OSP radius (m): ~0.35Gas Species: DInjector(s): LFS & HFSNBI Species: DVoltage (kV) A: 90B: 90C: 70Duration (s): 1.0ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NA	Configuration: LSN		
Outer gap (m): 0.1 Inner gap (m): 0.05 Z position (m): $-0.02 - 0.0$ Elongation: 2.3 Triangularity (U/L): $0.7/0.7$ OSP radius (m): ~ 0.35 Gas Species: DInjector(s): LFS & HFSNBI Species: DVoltage (kV) A: 90B: 90C: 70Duration (s): 1.0 ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NACHI: OffBank capacitance (mE): NA	rtEFIT controls: Isoflux		
Elongation: 2.3Triangularity $(U/L): 0.7/0.7$ OSP radius $(m): ~0.35$ Gas Species: DInjector(s): LFS & HFSNBI Species: DVoltage (kV) A: 90B: 90C: 70ICRF Power $(MW): 0$ Inter-strap phase $(^{\circ}): NA$ Duration $(s): 1.0$ CHI: OffBank capacitance $(mE): NA$	Outer gap (m): 0.1	Inner gap (m): 0.05	Z position (m): -0.02 – 0.0
Gas Species: DInjector(s): LFS & HFSNBI Species: DVoltage (kV)A: 90B: 90C: 70Duration (s): 1.0ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NACHI: OffBank capacitance (mE): NA	Elongation: 2.3	Triangularity (U/L): 0.7/0.7	OSP radius (m): ~0.35
NBI Species: D Voltage (kV)A: 90B: 90C: 70Duration (s): 1.0ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NACHI: OffBank capacitance (mE): NA	Gas Species: D	Injector(s): LFS & HFS	
ICRF Power (MW): 0Inter-strap phase (°): NADuration (s): NACHI: OffBank capacitance (mE): NA	NBI Species: D Voltage	(kV) A: 90 B: 90 C:	70 Duration (s): 1.0
CHI: Off Bank conscitance (mE) : NA	ICRF Power (MW): 0	Inter-strap phase (°): NA	Duration (s): NA
CIII. OII Dalik capacitalice (IIII'). NA	CHI: Off Ban	k capacitance (mF): NA	
LITERs: On Total deposition rate (mg/min): 5-10	LITERs: On	Total deposition rate (mg/min): 5	5-10
LLD: Temperature (°C): whatever	LLD: Temperature (°	C): whatever	
EFC/RWM coils:Pre-programmed and Feedback (on n=1)Configuration:6 subunit operation of the SPAs			

DIAGNOSTIC CHECKLIST

TITLE: Software Test for n=1 Proportional Control AUTHORS: S.P. Gerhardt

No. **OP-XMP-78** DATE: **7/11/2011**

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		Χ
Bolometer – divertor		
Bolometer – midplane array		X
CHERS – poloidal		Χ
CHERS – toroidal		X
Divertor L-alpha array		Χ
Divertor visible camera		X
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		Χ
Edge pressure gauges		X
Edge rotation diagnostic		X
Fast cameras – divertor/LLD		Χ
Fast ion D_alpha - poloidal		X
Fast ion D_alpha - toroidal		X
Fast lost ion probes - IFLIP		X
Fast lost ion probes - SFLIP		X
Filterscopes		Χ
FIReTIP		Χ
Gas puff imaging – divertor		Χ
Gas puff imaging – midplane		Χ
Hα camera - 1D		X
High-k scattering		X
Infrared camera – standard		X
Infrared camera – 2-color		Χ
Infrared camera – wide-angle		X
Interferometer - 1 mm		X
Langmuir probes – divertor		Χ
Langmuir probes – LLD		Χ
Langmuir probes – bias tile		Χ
Langmuir probes – RF ant.		X
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism		Χ
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes		X
Magnetics – Rogowski coils		
Magnetics – Halo currents		X
Magnetics – RWM sensors	\checkmark	

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MAPP		
Mirnov coils – high f.		X
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		X
Mirnov coils – 3-axis proto.		
MSE-CIF		X
MSE-LIF		X
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		X
Plasma TV	\checkmark	
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – divertor		X
Spectrometer – SPRED		X
Spectrometer – VIPS		X
Spectrometer – LOWEUS		X
Spectrometer – XEUS		X
SWIFT – 2D flow		
TAE Antenna		
Thomson scattering		X
USXR – pol. arrays		X
USXR – multi-energy		X
USXR – TG spectr.		X
Visible bremsstrahlung det.		X
X-ray crystal spectrom H		X
X-ray crystal spectrom V		X
X-ray tang. pinhole camera		X