Agenda

- Motivation & Background for XP-1106
- Summary of XMP-77 (n=0 Control Software Checkout)
- XP-1106 shot list
- Summary of XMP-72 (RWM Control Software Checkout)

Development of Improved Vertical Position Control

College W&M

Colorado Sch Mines

Columbia U

CompX

General Atomics

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

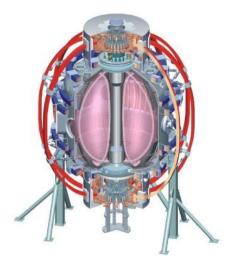
UC Irvine

UCLA

UCSD

U Colorado

U Illinois


U Maryland

U Rochester

U Washington

U Wisconsin

NSTX Team Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec

Strategy To Improve Vertical Position Control

- Improve the detection of small vertical motion.
 - "dZ/dt Observer"
- Utilize improved observer in optimization of control with PF-3 as the actuator.
- Utilize improved observer in optimization of control with the RWM coils as the actuator.
- From group review...E. Kolemen examined the problem for improvements to the underlying architecture of the controller.
 - Found that there were no simple ways to improve control, due to the somewhat nonstandard coupling of ISOFLUX & Z_P control.

Vertical Position Controller is a PD Controller Using Loop Voltages for dZ/dt Measurement

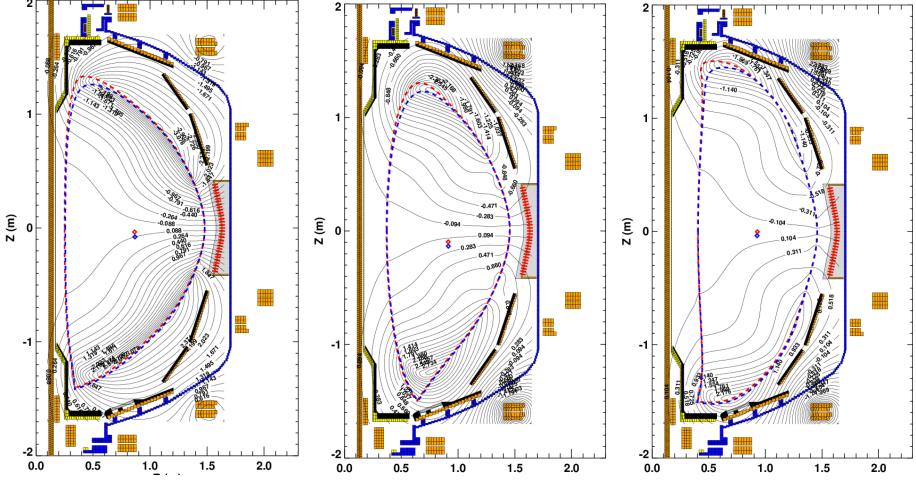
Proportional controller is simply the Isoflux shape control algorithm:

$$V_{PF-3,P} = M \times PID(\text{segment error})$$

Fast derivative controller is based on the up-down loop voltage difference.

$$V_{PF-3,D} = D \times \left(\dot{\psi}_{Upper-Loop} - \dot{\psi}_{Lower-Loop} \right)$$

 The underlying assumption is that the plasma vertical position can be measured by only 2 loops:


$$I_{P}Z_{P} = C \times \left(\psi_{Upper-Loop} - \psi_{Lower-Loop}\right)$$

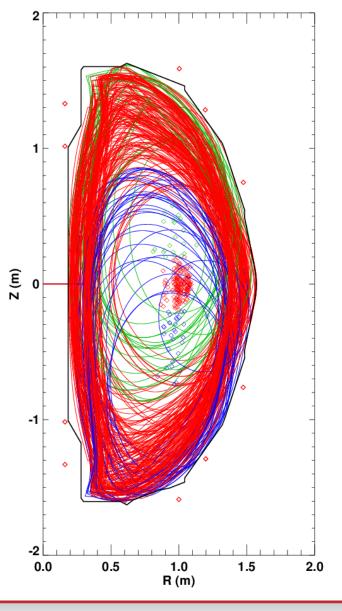
- Thesis: Using more/different loop voltages will lead to a better estimation of the plasma position.
 - Eliminate n=1 pickup from random loop orientation problems.
 - More information for shapes that are distorted.
- Proper selection of measurement loops has been emphasized in the literature:
 - Ward & Hofmann, Nuclear Fusion 34, 401 (1994)
 - Pomphrey, Jardin, and Ward, Nuclear Fusion 29, 465 (1989)
 - Albanese, Coccorese, and Rubinacci, Nuclear Fusion 29, 1013 (1989)
 - C. Kessel, et al., Nuclear Fusion 41, 953 (2001)

Plasma Equilibrium Determines the Most Sensitive Loop Pair

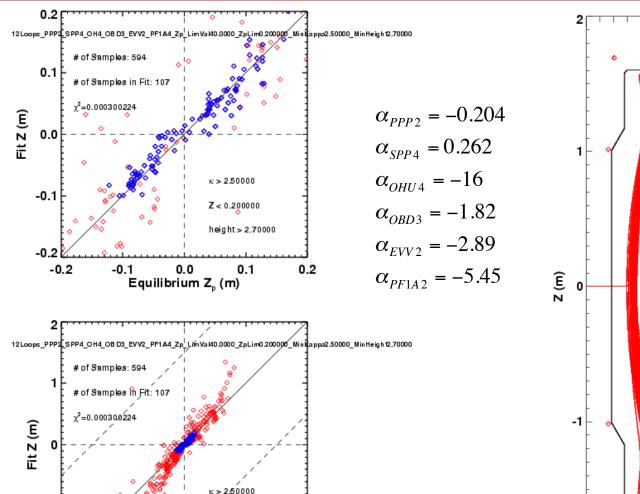
Compute pairs of equilibria displaced by 2 cm: Subtract them from each other (Surrogate for the voltage.): Compute the expected flux difference:

 ψ_1 and ψ_2 $\delta \psi = \psi_1 - \psi_2$ $\delta \psi_{UD} = \delta \psi - \delta \psi (z = -z)$

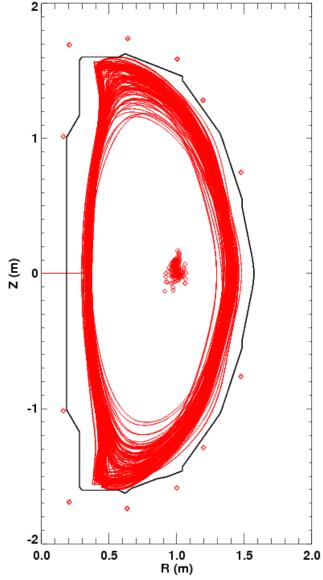
No single pair is optimal for detecting vertical motion.


Use a Database of Equilibria to Determine Which Loops are Best For Detecting Vertical Motion

- Consider ~590 NSTX equilibria.
 - Majority from LRDFIT and EFIT reconstructions
 - Include currents in the passive plates, mode nonrigidity.
 - Minority generated with ISOLVER
- Computed the flux at the various flux loop locations.
- Fit the magnetic axis location to a function:
 - Only use equilibria with |Z_P|<20 cm

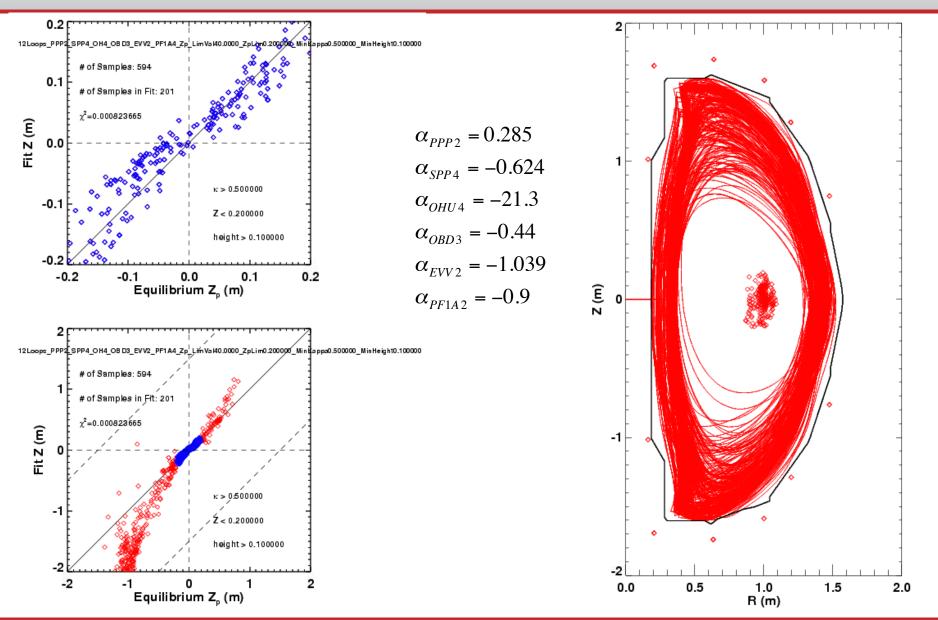

$$I_{P}Z_{P} = \sum_{i=1}^{NumLoopPairs} \alpha_{i} \times \left(\psi_{Upper-Loop,i} - \psi_{Lower-Loop,i}\right)$$

$$Z_{P} = \frac{\max(Z_{boundary}) + \min(Z_{boundary})}{2}$$

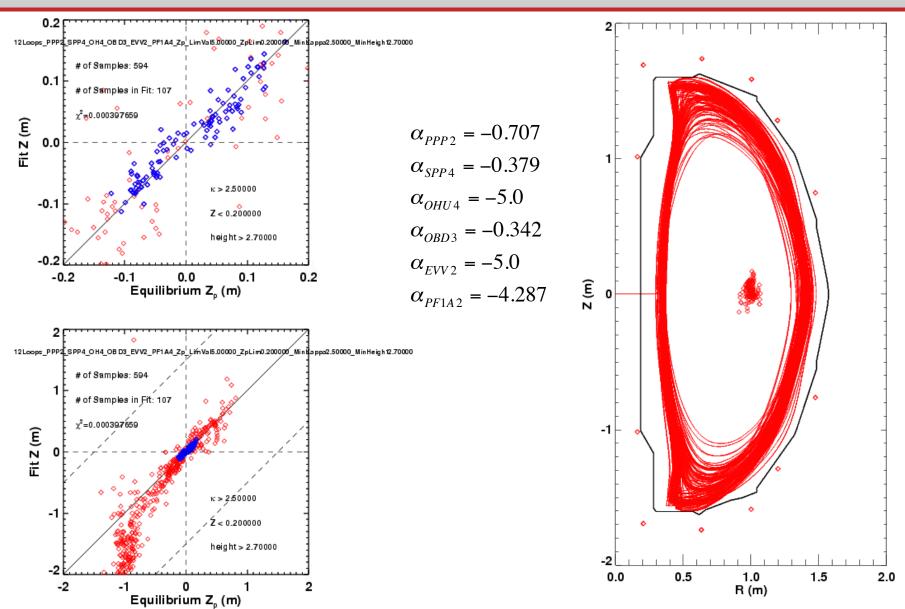

- Find coefficients α from:
 - linear SVD solution, or
 - constrained optimization
 - Prevent any single value α from becoming too large.

Example: Constrain to Only High Elongation Plasmas

Ź < 0.200000 height > 2.70000


-1

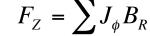
-2

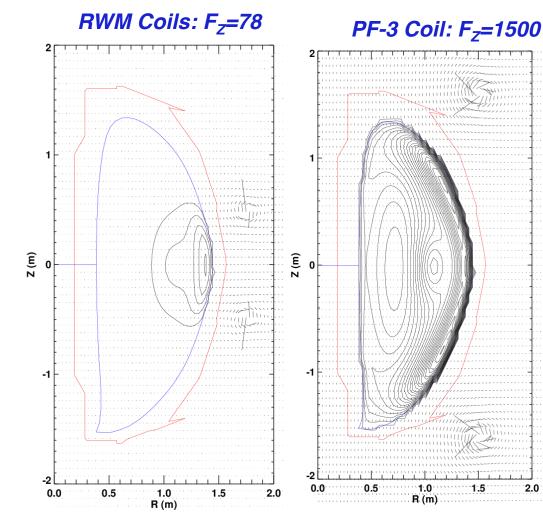

-1

Equilibrium Z, (m)

Example: Constrain to Also Sorts of Plasmas

Example: Only High Elongation, But With Limits on the Size of Any Individual Weight


Strategy For Determining Loop Weighing


- There is a balance to be struck:
 - Linearity: Put all weight on inner flux loops
 - Noise immunity: Distribute weight across loops
- n=1 pickup (tearing and kink modes) will be stronger in some loop pairs than others.
 - Won't really know this until we see the data.
- Will pick final weight coefficients based on actual difference voltage signals.
 - Use actual voltage differences (including any noise).
 - First use coefficients from previous analysis, compare reconstructed and estimated d(I_PZ_P)/dt (will need fast EFITs/LRDFITs).
 - May need to further adjust weights.
 - Will require a week or so of operation will all loop voltage differences functioning and data being collected.

Vertical Position Control May Be Possible With the RWM Coils

Calculate force assuming 1 amp of power supply currents $F_Z = \sum J_{\phi} B_R$

RWM Coils make far less force for the same power supply current.

(ratio is not as bad for lower-elongation plasmas)

However....

- 1) SPA are very fast (0 to 3 kA in 1-2 msec)
- 2) Latency in that system is smaller
- 3) RWM coil field may not couple as strongly to the passive plates.

Formulation of the PCS Code

• Estimate of $d(Z_PI_P)/dt$: $\frac{d(I_PZ_P)}{dt} = \sum_{j=0}^{8} \alpha_j V_{UL,j}$

Form the SPA current request:

$$I_{SPAi}^{req}(t) = I_{SPAi}^{OHxTF}(t) + I_{SPAi,B_R}^{RWM}(t) + I_{SPAi,B_P}^{RWM}(t) + I_{SPAi}^{pre}(t) + I_{SPAi}^{VDE}(t)$$

$$I^{VDE}(t) = -D_{RWM}^{VDE} \times LPF\left(\frac{d(ZI_P)}{dt}, \tau_{VDE}\right)$$

$$I_{SPAi}^{VDE}(t) = I^{VDE}(t)$$

- How big should D be?
 - Take a 1 MA plasma, moving 10 cm in 10 msec:
 - $d(Z_PI_P)/dt = 1*0.1/0.01 = 10 \text{ MAm/sec}$
 - We want 3000 A of current for this feedback.
 - D=3000/10=300 Asec/MAm

Hardware and Software Status

dZ/dt Observer

- Complete specification has been written, implemented in PCS
- Electronics for voltage differences are finished, installed in NTC, and fully cabled in.
- Changes to MDS+ tree for additional channels have been made.
- Offline IDL code written for comparison to archived realtime data.
- Testing is making good progress.
 - And has been a good (& painful) learning experience for those involved...
- RWM coils for Z_{axis} control.
 - Specification has been written.
 - Relies on the improved dZ/dt observer for the measurement.
 - Code has been implemented as part of the 6 subunit proportional control algorithm.
- XMP written for testing of these software changes.

Backup

Note on Gain Equivalences

Present system uses a gain of 80.

- i.e.:
$$V_{VDE} = 80V_{PPP2}$$

- New system will use a formulation: $V_{VDE} = D \sum \alpha_i V_i$
- For observer with PPP2 loops only, α =2.5.

$$V_{VDE} = D \cdot 2.5 \cdot V_{PPP2}$$

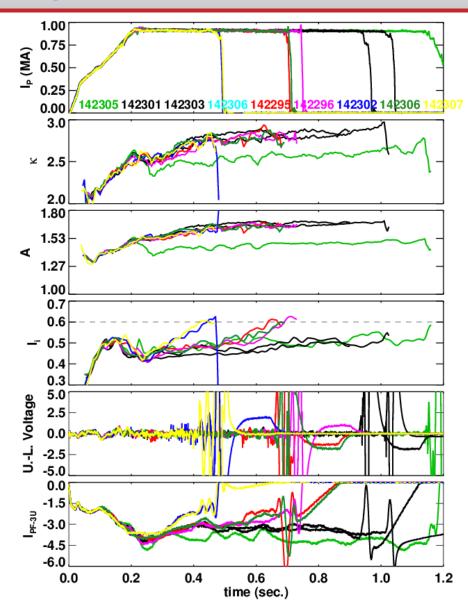
• So, equivalent derivative gain is now 80/2.5=32.

Run Plan (I)

- Debugging: Compare PCS calculations to identical off-line versions.
- XMP (?): Test that system is correctly coupled to the PF-3 coils.
 - Switch to new controller formulation (the α s), use the same single loop pair and value of gain (27) that reproduces the old system.
 - Show that vertical controller still works.
- Day 1: Optimize gains with PF-3 as actuator, new d(I_PZ_P)/dt observer.
 - Reload vertically unstable target, A \sim 1.75, κ =2.9. Show a VDE. (3 shots)
 - Potential reload is 142301.
 - Use divertor gas injection to drive I_i up?
 - Transition to new $d(I_PZ_P)/dt$ observer, same overall gain. Repeat. (4 shots)
 - If no VDE, then increase κ until a VDE occurs.
 - Scan control gain for optimum stability. (5 shots)
 - (or oscillation develops).
 - Contingency, do one of: (5 shots)
 - Test a second combination of loops.
 - Repeat gain scan
 - · Use same combination of loops, change the shot and demonstrate benefits.
 - For instance, lower-delta target with reduced beam heating.

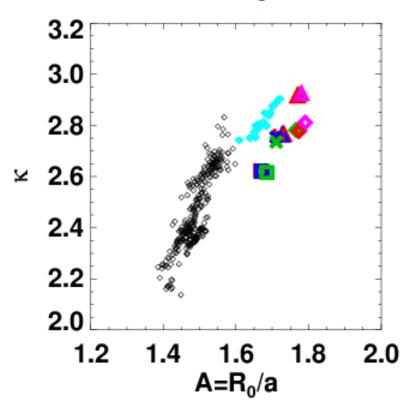
Run Plan (2nd ½ day, using RWM coils, if necessary)

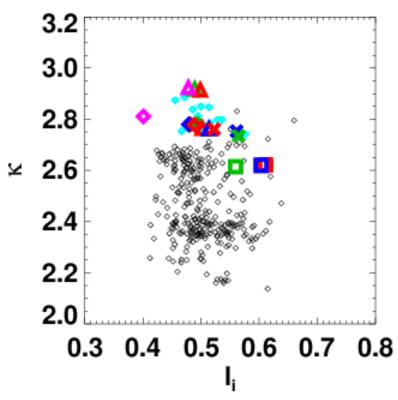
- Turn off PF-3 vertical control and see plasma drift. (3 shots)
 - Use fiducial like target
 - Shot to reload: 141640
- Add n=0 control with RWM coils.


(7 shots)

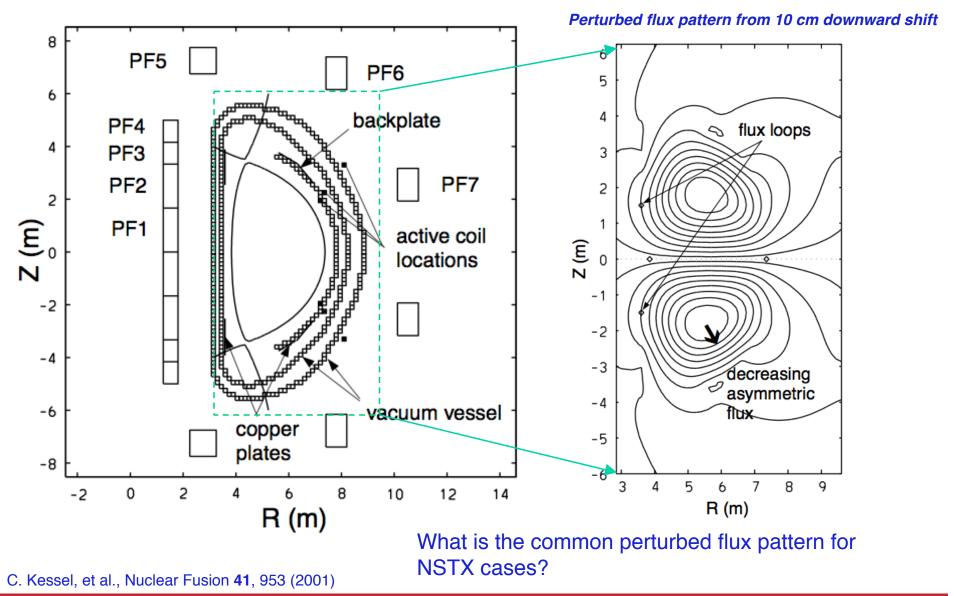
- Scan gain using value 0.5, 1.0, 1.5, 2.0, 2.5
- Stop scan when coil currents become too large, or VDE is stabilized.
- If VDE is stabilized, then increase inner gap until instability is achieved. (4 shots)
- Test combined PF-3 and RWM coil control to determine the new limit on aspect ratio and I_i.
 (4 shots)

XP in 2010 Showed that Vertical Position Control can be Lost at Higher Aspect Ratio

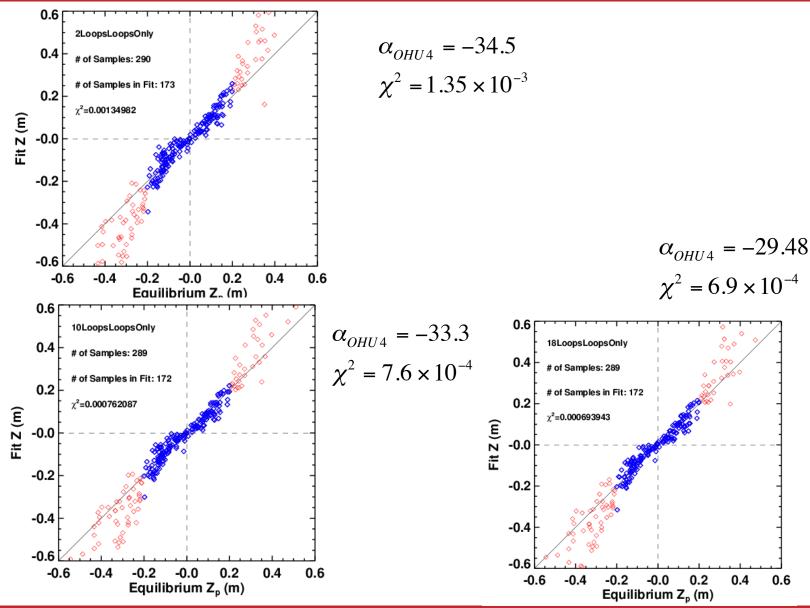

- 1 Fiducial (green) and 8 shots at higher aspect ratio.
 - Black cases vertically stable, the colored ones have VDEs.
- VDE is always triggered when I_i=0.6.
 - This is not a particularly high value.
 - Would preclude use of the scenario for many XPs.
- Other instances of vertical stability problems.
 - Egemen's squareness XP.
 - Ron Bell's DIII-D comparison XP.
 - After every nearly every locked mode and RWM.
- Motivates improvements to the n=0 controller.



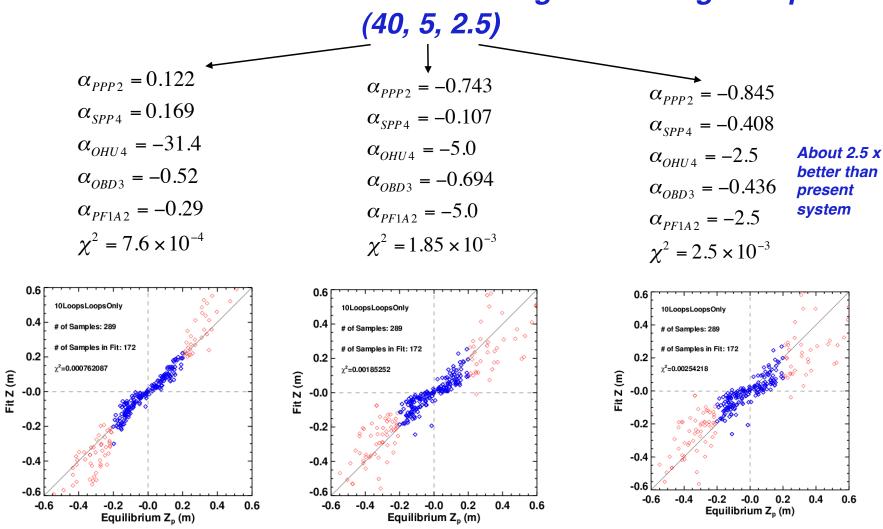
Interesting Scenarios for the Upgrade Will Push Against These Limits



Ask for high-kappa at values of l_i comparable to present values.



Inboard Side Loops Were Chosen in a Study for ITER Control in Kessel, et al.

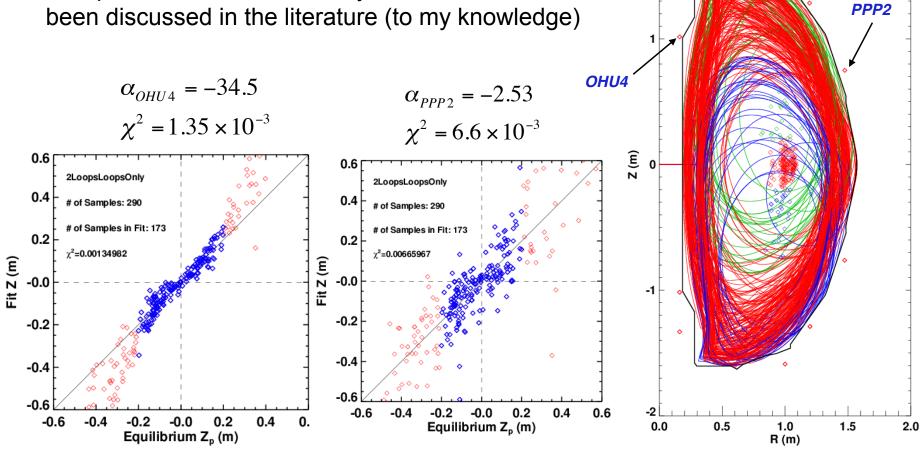


Adding More Loops With Unconstrained Fitting Allows Further Reduction of χ^2 , Keeps Weight on CSC Loops

Constrained Optimization Can Balance Sensitivity Against Linearity

Scan of the maximum allowable weight on a single loop

Study neglects any benefits that might come from elimination n=1 pickup.



Studies Show That Loops on the Center Column are Most **Linear...But Least Sensitive**

CSC loops have less relative coupling to plates, are more linear.

But are much less sensitive (34 vs 2.53).

Compromise between linearity and sensitive has not

