

National Spherical Torus Experiment (NSTX)

NSTX Mission, Design & Results

C. Neumeyer and the NSTX Team

Princeton Plasma Physics Laboratory Los Alamos National Laboratory Oak Ridge National Laboratory University of Washington Columbia University General Atomics

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Outline

- Mission of NSTX
- Engineering Overview
- Research Plan
- Accomplishments

NSTX Mission

 NSTX is an alternate concept *Proof of Principle* experiment whose mission is to demonstrate the <u>Physics</u> and <u>Technology</u> of the Spherical Torus (ST) plasma

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Physics Mission: Demonstrate ST Plasma

- Efficient magnetic confinement
 - High beta (e.g. = $2\mu_0 /B_0^2$ 25 40%)
 - Reduced toroidal field requirement for confinement
- Natural elongation
 - Reduced poloidal field requirement for shape control
 - Flux expansion in divertor regions, reduced power density on walls
- Enhanced MHD stability
 - Reduced turbulence, improved confinement and transport
- High pressure driven (bootstrap) current f_{BS} 50 90%
 - Offsets the fact that an ST reactor cannot rely on inductive current drive using a central solenoid
- Reduced disruption severity

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Technology Mission

- Demonstrate Non-Inductive Heating & Current Drive
 - High Harmonic Fast Wave (HHFW) Heating & Current Drive
 - Coaxial Helicity Injection (CHI)
- Construct an ST machine
 - Low aspect ratio, high performance Center Stack
 - Special provision for CHI

Strategy

- Begin with thin, low aspect ratio OH Solenoid
 - Initial experimentation using double swing inductive drive (T 0.5s)
 - Single swing plasma with sustainment using HHFW & CHI (T->5 sec)

NSTX Facility and Engineering

NSTX at 1st Plasma

• Located in the Hot Cell adjacent to the TFTR Test Cell, making extensive use of existing facilities:

- AC power
- Magnet power supplies
- RF systems
- NBI systems
- Water systems
- Buildings and HVAC systems
- Many components from TFTR
- 1st Plasma in February 1999
- Total Project Cost \$23.6M
- Site Credits \$77M

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

NSTX Ratings and Parameters

Plasma	Major Radius (R ₀)	85.4 cm
	Aspect Ratio (R/a)	1.26
	Volume	12m ³
	Elongation	1.6 2.2
	Triangularity	0.2 0.5
	Current	1.0 MA (1.5MA)
	Ramp Time	0.2 - 0.4 sec
	Flat Top (Inductive)	0.5 sec per 600 sec
	Flat Top (non-Inductive)	5.0 sec per 300 sec
Toroidal Field	Field @ R ₀	3.0/6.0 kG
Ohmic Heating	Flux (double swing)	0.9 volt-sec
	Initiation Loop Voltage @ R ₀	5.0 volt/turn
Heating/	High Harmonic Fast Wave (HHFW) RF	6.0 MW, 30MHz, 5 sec
Current Drive	Coaxial Helicity Injection (CHI)	500kA via 50kA injection @ 1kV
	Neutral Beam Injection Upgrade (NBI)	5.0 MW, 80kV, 5 sec
Pre-Ionization	Electron Cyclotron	30kW, 18GHz, 0.1 sec
Bakeout	Bakeout Temperature	350°C PFCs, 150°C VV

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Center Stack Arrangement

- Compact nested TF Inner Legs
 - efficient use of space
 - ease of manufacture
- OH Tension cylinder
 - launching load reaction
 - ease of manufacture
- Four layer, 2-in-hand OH
 - high performance solenoid
 - rapid cool down time
- OH-CS Casing gap
 - R 10mm, 0.4" for thermal insulation, diagnostics & installation clearance
 - Microtherm insulation T 500C

VSTX

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Mechanical Support Scheme

- Center Stack rests on pedestal on floor
- TF Inner Leg assembly thermal growth
 - slides inside OH tension tube
 - connects to outer legs via flex joint
 - connection to top umbrella via sliding spline joint
- TF Inner Leg assembly torsion
 - hub ass'ys transfer load via umbrella to outer VV
- TF Outer Leg dead weight and overturning moment - reacted to outer VV via turnbuckles
- OH Thermal Growth
 - slides over tension tube and inside CS casing
 - compresses washer stack at top
- Center Stack Thermal Growth absorbed by bellows
- VV Thermal Growth
 - sliding joints to legs, umbrellas, PF coils, and spline

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

TF Inner Leg Assembly

- 12 inner + 24 outer = 36 turns
- Each turn water cooled
- Radial flags secured by wedged hub assembly
- 72kA/turn, 1kV produces 6kG at R₀
- 11.8 MPa (1.7ksi) insulation shear

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

OH Solenoid

- approx. 1000 turns in 4 layers wound 2-in-hand
- 8 parallel cooling paths, 600 second cool down
- +/- 24kA/turn, 6kV produces 0.6 volt-sec flux swing
- Central B approx. 8T, 138 MPa (20ksi) Cu stress

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Center Stack Assembly

- Compact interlocking CFC tiles on Inner Wall (R=14mm, 0.55")
- Center Stack Assembly is completely removable

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

TF Outer Legs

• Demountable bow shaped outer legs with turnbuckle supports

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Vacuum Vessel

- Continuous 304 Stainless Steel VV (thickness = 16mm, 5/8")
- Sliding supports for outer PF coils and internal hardware

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Internal Hardware & Plasma Facing Components

CuCrZr passive stabilizer plates with heating/cooling system
approx. 3000 tiles (design provided by ORNL)

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Diagnostic Sensors

- Compact Ip Rogowski's in center stack (R=3.5mm, 0.135")
- High temp (up to 600C) in-vessel sensors
- 17 Rogowskis, 105 flux loops, 135 Mirnovs, 24 Langmuirs, 128 TCs

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

RF Systems

- High Harmonic Fast Wave (HHFW) RF
 - 6MW @ 30MHz, absorbtion mainly by electrons
 - Six PPPL sources, TFTR xmission lines, new 12 strap antenna
 - Tuning and matching network designed by ORNL
- Electron Cyclotron (EC) Pre-ionization system provided by ORNL

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Neutral Beam Injection (NBI)

• One TFTR Beam Line @ 5MW, 80kV, 5 seconds

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Magnet Power Supplies

- Extensive use of existing facilities
- One MG set to buffer load from grid
 - Smax 200MVA, Wmax 170MJ
- Modular TFTR rectifier design
 - 74 six-pulse bridges available
 - Direct digital control from central computer
- Advanced 3-wire, antiparallel configuration
 - 4-quadrant operation
 - separate control of upper and lower PF coil pairs

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Key Engineering Features

- Compact, removable Center Stack
 - Nested two-tier TF inner leg conductors
 - Four layer, two-in-hand high performance OH solenoid
 - Tight tolerances and precise assembly
 - Compact inner wall PFC tile design
 - Miniature diagnostic sensors
 - Microtherm insulation
- Unique support schemes and mechanical load paths
- Extensive use of TFTR facility and components

Research Plan

TOPICS	Ohmic studiesInitial CHIInitial HHFW	 Transport Full HHFW Macro-stability Full HHFW 	CHI• Turbna-wall• Activintegration• Edge	 ulence Noninductive Ve Stabil. Integration >> E 		
(FY99)	(FY00)	(FY01-FY03)		(FY04-FY06)		
· · · ·	(14 weeks)	(40weeks)		(40weeks)		
1st Plasma 1 MA 200kA NBI, February 99 CHI 4MW HHFW						
Capabilities	Inductive	Assisted Non-In	ductive	Full Non-Inductive		
Plasma Curre	ent • 0.5 MA	• 1 MA		• ~ 1 MA		
Pulse	• 0.5 s	• 1 s		• 5 s		
HHFW Powe	r • 4 MW	• ~ 6 MW		• ~ 6 MW		
NBI Power		• 5 MW		• ~ 5 MW		
CHI Startup	• 0.2 MA	• 0.5 MA		• ~ 0.5 MA		
Toroidal Beta	l	• 25%		• 40%		
Bootstrap		• 40%		• 90%		
Control	• current, R, sl	hape • heating, densi	.y	• profiles, modes		
Measure	• $T_e(r), n_e(r)$	• $j(r)$, $T_i(r)$, flow	, edge	• turbulence		

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

NSTX 2001

Parameters Baseline and (Achieved) Elongation \leq **2.2** (2.5) Triangularity $\leq 0.6 (0.5)$ Plasma Current **1 MA** (1.07 MA) **Toroidal Field 0.3 to 0.6 T** (0.45 T) Heating and CD **5 MW NBI (3.2 MW) 6 MW HHFW** (4.2 MW) 0.5 MA CHI (0.26 MA) **Pulse Length** \leq 5 sec (0.5 sec)

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Objectives of Initial Phase of Research Have Been Accomplished and Exceeded

- Explored Inductive (OH) Operating Regime
 - Established target equilibria
 - Studied confinement trends, operating limits, and limiting mechanisms up to 1 MA
- Achieved < t>=22% with Neutral Beam Injection (NBI)
 - Confinement looks very good
- High Harmonic Fast Waves (HHFW) used for electron heating
 - Significant increase in Te(0)
- Non-inductive startup using Coaxial Helicity Injection (CHI)
 - Significant toroidal currents generated
- H-mode has been observed

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Variety of Ohmic Plasmas Have Been Produced

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

C. Neumeyer / NSTX Team

VS TX

Range of Plasma Shapes Has Been Explored

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Boronization Used To Reduce Impurities and Flux Consumption

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Achieved Densities Above Greenwald Limit

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

High- t With Good Confinement Obtained

 $_{t}=2\mu_{0}/B_{0}^{2}=19.7\%, n=3.9, B_{0}=0.3 T, q=7.5$

eam

Energy Confinement Enhanced Over Both L- and H-mode Predictions

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Brief H-mode Observed in NSTX

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

C. Neumeyer / NSTX Team

(D) NSTX

HHFW Electron Heating On- and Off-Axis

Workshop on Blanket and Fusion Concepts for t Transmutation of Actinides

Coaxial Helicity Injection (CHI)

- Discharge initiated across inboard and outboard divertors in lower half plane
- JxB forces lead to toroidal current transported upwards from injector region
- Toroidal current 10 to 20 times injected current
- Reconnection leads to closed flux surfaces
- Ip 270kA has been produced with multiplication factor 10
- Issues
- understanding reconnection physics, confirming flux closure
- feedback control and absorber arc avoidance
- impurity influx
- eventual coupling with RF current drive

240kA CHI Discharge

T = 150ms

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Summary of Performance (best non-simultanous)

Plasma Current I _p	1.0 MA	
I _p Flat Top @ 1MA	250 ms	
dl _p /dt	~ 5.5 MA/s	
Ejima Coefficient = $V_{res} dt/\mu_0 R_0 I_p$	~ 0.35	
Stored Energy W	~ 164 kJ	
Confinement time E	~ 120 mS	
$T = 2\mu_0 /B_0^2$	~ 21%	
T _e	~ 1.5keV	
T _i	~ 2keV	
n _e	$1 \sim 6 \times 10^{-19} \text{ m}^{-3}$	
n _e /n _{greenwald}	~ 1	
P _{nbi}	3.2MW	
P _{hhfw}	4.2MW	
I _p CHI	270kA	
Z _{eff}	~ 3	

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

Plasma Disruptions

- Disruption / halo current j x B forces were a major design concern
- Vertical Displacement Events (VDEs) result in fast disruptions dI_p/dt 166 MA/sec as predicted
- Observed halo-currents are modest, 5 % of I_p (10% was design requirement)

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides

- First phase operations have been highly successful
- RF and NBI heating experiments are underway
 - (21%) and confinement $(2_{E}^{89P}, 1.6_{E}^{ELMy})$ very good
- Challenging current sustainment phase comes next

Workshop on Blanket and Fusion Concepts for the Transmutation of Actinides