NSTX

13_021219_CLN_01.doc

TO: DISTRIBUTION

FROM: C NEUMEYER

SUBJECT: VOLTAGE CONSTRAINTS DUE TO ABSORBER COILS

Reference: "CHI Absorber Field Nulling Coil Description, Revised", 22-020816-CLN-01.

The two new CHI Absorber field nulling coils are subject to mutual coupling to the other PF coils on NSTX. For interactions between pairs of coils, where coil 1 is the driving coil starting at $\mathrm{I}_{1}=0$ and coil 2 is the coupled and open circuited coil:

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{L}_{1} \mathrm{dI} / \mathrm{II}_{1} \mathrm{dt} \\
& \mathrm{~V}_{2}=\mathrm{M}_{12} \mathrm{dI}_{1} / \mathrm{dt} \\
& \mathrm{~V}_{2}=\mathrm{V}_{1} * \mathrm{M}_{12} / \mathrm{L}_{1}
\end{aligned}
$$

The mutual inductance matrix for NSTX, including the new CHI Absorber coils, is as follows.

PF Coil Inductances (Henry)

	OH	PF1AU	PF1AL	PF1B	PF2U	PF2L	PF3U	PF3L	PF4	PF5	PFAB1	PFAB2
OH	$\begin{array}{r} 1.30 \mathrm{E}- \\ 02 \end{array}$	7.31E-04	7.31E-04	3.74E-04	$2.76 \mathrm{E}-04$	2.76E-04	2.95E-04	$2.95 \mathrm{E}-04$	3.79E-04	5.28E-04	6.18E-04	$4.86 \mathrm{E}-$
PF1AU	$\begin{array}{r} 7.31 \mathrm{E}- \\ 04 \end{array}$	3.76E-04	$1.95 \mathrm{E}-07$	$2.25 \mathrm{E}-07$	7.23E-05	$1.35 \mathrm{E}-06$	$6.04 \mathrm{E}-05$	$5.29 \mathrm{E}-06$	$3.16 \mathrm{E}-05$	4.16E-05	1.95E-04	$\begin{array}{r} 1.22 \mathrm{E}- \\ 04 \end{array}$
PF1AL	$\begin{array}{r} 7.31 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$1.95 \mathrm{E}-07$	3.76E-04	$9.01 \mathrm{E}-05$	$1.35 \mathrm{E}-06$	7.23E-05	5.29E-06	$6.04 \mathrm{E}-05$	$3.16 \mathrm{E}-05$	4.16E-05	8.07E-07	$\begin{array}{r} 1.45 \mathrm{E}- \\ 06 \end{array}$
PF1B	$\begin{array}{r} \hline 3.74 \mathrm{E}- \\ 04 \end{array}$	2.25E-07	$9.01 \mathrm{E}-05$	5.36E-04	$1.66 \mathrm{E}-06$	1.86E-04	6.61E-06	$1.01 \mathrm{E}-04$	4.15E-05	5.43E-05	9.69E-07	$\begin{array}{r} 1.78 \mathrm{E}- \\ 06 \end{array}$
PF2U	$\begin{array}{r} \hline 2.76 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$7.23 \mathrm{E}-05$	$1.35 \mathrm{E}-06$	$1.66 \mathrm{E}-06$	$1.98 \mathrm{E}-03$	$1.03 \mathrm{E}-05$	7.31E-04	4.11E-05	$2.64 \mathrm{E}-04$	3.45E-04	6.50E-04	$\begin{array}{r} 1.84 \mathrm{E}- \\ 03 \end{array}$
PF2L	$\begin{array}{r} \hline 2.76 \mathrm{E}- \\ 04 \\ \hline \end{array}$	$1.35 \mathrm{E}-06$	7.23E-05	$1.86 \mathrm{E}-04$	$1.03 \mathrm{E}-05$	$1.98 \mathrm{E}-03$	$4.11 \mathrm{E}-05$	7.31E-04	$2.64 \mathrm{E}-04$	3.45E-04	5.92E-06	$\begin{array}{r} 1.10 \mathrm{E} \\ 05 \\ \hline \end{array}$
PF3U	$\begin{array}{r} 2.95 \mathrm{E}- \\ 04 \end{array}$	6.04E-05	5.29E-06	6.61E-06	7.31E-04	4.11E-05	5.18E-03	$1.66 \mathrm{E}-04$	$1.16 \mathrm{E}-03$	$1.49 \mathrm{E}-03$	3.57E-04	$\begin{array}{r} 7.42 \mathrm{E} \\ 04 \end{array}$
PF3L	$\begin{array}{r} 2.95 \mathrm{E}- \\ 04 \end{array}$	5.29E-06	6.04E-05	$1.01 \mathrm{E}-04$	4.11E-05	7.31E-04	$1.66 \mathrm{E}-04$	5.18E-03	$1.16 \mathrm{E}-03$	$1.49 \mathrm{E}-03$	2.35E-05	$\begin{array}{r} 4.39 \mathrm{E}- \\ 05 \end{array}$
PF4	$\begin{array}{r} 3.79 \mathrm{E}- \\ 04 \end{array}$	3.16E-05	3.16E-05	4.15E-05	2.64E-04	$2.64 \mathrm{E}-04$	$1.16 \mathrm{E}-03$	1.16E-03	5.16E-03	$4.81 \mathrm{E}-03$	1.48E-04	$\begin{array}{r} 2.79 \mathrm{E} \\ 04 \end{array}$
PF5	$\begin{array}{r} \hline 5.28 \mathrm{E}- \\ 04 \end{array}$	4.16E-05	4.16E-05	5.43E-05	3.45E-04	3.45E-04	$1.49 \mathrm{E}-03$	$1.49 \mathrm{E}-03$	$4.81 \mathrm{E}-03$	$1.23 \mathrm{E}-02$	$1.93 \mathrm{E}-04$	$\begin{gathered} \hline 3.66 \mathrm{E} \\ 0 \end{gathered}$

PFAB1	$6.18 \mathrm{E}-$ 04	$1.95 \mathrm{E}-04$	$8.07 \mathrm{E}-07$	$9.69 \mathrm{E}-07$	$6.50 \mathrm{E}-04$	$5.92 \mathrm{E}-06$	$3.57 \mathrm{E}-04$	$2.35 \mathrm{E}-05$	$1.48 \mathrm{E}-04$	$1.93 \mathrm{E}-04$	$3.93 \mathrm{E}-03$	$1.33 \mathrm{E}-$ 03
PFAB2	$4.86 \mathrm{E}-$	04	$1.22 \mathrm{E}-04$	$1.45 \mathrm{E}-06$	$1.78 \mathrm{E}-06$	$1.84 \mathrm{E}-03$	$1.10 \mathrm{E}-05$	$7.42 \mathrm{E}-04$	$4.39 \mathrm{E}-05$	$2.79 \mathrm{E}-04$	$3.66 \mathrm{E}-04$	$1.33 \mathrm{E}-03$

Using the above inductance and the maximum design voltage for each circuit, one can estimate the maximum induced voltage due to each PF coil as follows.

Induced Voltages (Volts)

	OH	PF1AU PF1AL	PF1B	PF2U	PF2L	PF3U	PF3L	PF5	
Vmax	6000.0	2000.0	2000.0	2000.0	2000.0	2000.0	2000.0	2000.0	3000.0
VindAB1	285.2	1037.2	4.3	3.6	656.6	6.0	137.8	9.1	47.1
VindAB2	224.3	648.9	7.7	6.6	1858.6	11.1	286.5	16.9	89.3

Since the new coils are only rated for 1000 V , it will be necessary to reduce the maximum allowable voltage in PF1AU AND PF2U from 2 kV down to 1 kV . Resultant induced voltages are as follows.

Induced Voltages (Volts) with PF1AU and PF2U reduced to 1 kV

	OH	PF1AU	PF1AL	PF1B	PF2U	PF2L	PF3U	PF3L	PF5
Vmax	6000.0	1000.0	2000.0	2000.0	1000.0	2000.0	2000.0	2000.0	3000.0
VindAB1	285.2	518.6	4.3	3.6	328.3	6.0	137.8	9.1	47.1
VindAB2	224.3	324.5	7.7	6.6	929.3	11.1	286.5	16.9	89.3

With multiple coils in operation the situation becomes more complex. One can imagine a scenario where all PF power supplies come fully on to $\mathrm{V}=\mathrm{V}_{\text {max }}$ starting from $\mathrm{I}=0$. Then $[\mathrm{V}]=[\mathrm{M}][\mathrm{dI} / \mathrm{dt}]$, and one can solve for the current derivatives according to the matrix equation $[\mathrm{dI} / \mathrm{dt}]=[\mathrm{M}]^{-1}[\mathrm{~V}]$, and then compute the voltages induced on the absorber coils due to the net influence. In this case, with PF1AU and PF2U reduced as recommended above the maximum voltages on AB 1 and AB 2 are 762 V and 1016 V , which is considered to be acceptable.

Future issues of ISTP-001, which includes declaration of the latest operating limits, will be in accordance with the above voltage limits.

Cc:	E Baker	M Bell	D Gates	R Hatcher	S Kaye
	M Peng	R Raman	S Ramakrishnan	R Marsala	D Mueller
	J Menard	M Ono	E Synakowski	A VonHalle	M Williams

