An Initial Look at HHFW Absorption by D and He Ions in NSTX

T.K. Mau

University of California, San Diego

NSTX Physics Meeting

August 14, 2000

Plasma Assumptions

- NSTX plasma is described by EQDSK equilibrium at various beta levels.
- The density and temperature profiles are assumed as:

$$T(\)/T_o = 0.95 \ (1-\ ^2) + 0.05$$

$$n(\)/n_o = 0.75 \ p(\)T_o/[p_oT(\)] + 0.25$$

$$T_i(\)/T_{io} = T_e(\)/T_{eo}$$

$$n_i(\)/n_{io} = n_e(\)/n_{eo}$$

- The ion species mixture is : 96% D(He), 4% (Oxy) giving $Z_{av} = 1.28$ (D) , 2.24 (He), and $Z_{eff} = 2.75$ (D), 2.86 (He).
- Ion beta is give by

$$_{i} = f_{i} / [Z_{av} (T_{e}/T_{i}) + 1]$$

where f_i is ion species concentration.

$$n_i/n_e = 0.75 (D), 0.43 (He)$$

HHFW Calculation Model

- The CURRAY ray tracing code is used.
- Wave propagation:
 - Cold ions ($k_{x-i} \ll 1$), thermal electrons
 - Mode conversion not included
- Wave absorption:
 - Linear electron landau, harmonic ion resonance
 - Full thermal effects included in E-field polarization factors in damping decrement
- Launched wave spectrum:
 - single N_{\parallel}
 - antenna current $\sim \cos[k_0 a(-0)]$
 - rays started along antenna poloidal extent at = 0.99
- For NSTX analysis here,

$$f = 30 \text{ MHz}$$

$$N_{\parallel} = 11 \quad [k_{\parallel} = 7 \text{ m}^{-1}]$$
 No. of rays used = 11

Typical Ray Tracing Results at Low β

- NSTX case with = 10%, $T_{eo} = 1$ keV, $T_{io} = 0.75$ keV, and D plasma.
- 10.2% of power is absorbed by D ions, occuring where k_{x-i} is peaked.

D Absorption is Much Stronger Than He Under Assumed Conditions, $\beta = 10\%$

- $P_D >>> P_{He}$ at same T_i
- $P_D(T_i) > P_{He}(2T_i)$
- At same , higher T, low n leads to weaker ion absorption, and vice versa.

Typical Ray Tracing Results at High β

- NSTX case with = 25%, $T_{eo} = 4$ keV, $T_{io} = 5$ keV, D-plasma.
- * Total single-pass absorption; 29% P_{rf} absorbed by D-ions. $k_{x-i} < 2$.

D Absorption is Much Stronger Than He at Same T_i **Under the Assumed Conditions**

$$\beta = 25\%$$

$$P_D >> P_{He}$$
 at same T_i
$$P_D(T_i) > P_{He}(2T_i)$$

Peak Ion Temperature, T_{io} (keV)

D Absorption is Stronger Than He Under the Assumed Conditions $\beta = 25\%$

 $P_D > P_{He}$ at same ion beta.

SUMMARY

- Initial calculations indicate that HHFW interaction with He is much weaker than with D for the same plasma .
- Operating at higher T and lower n results in much weaker ion absorption for the same plasma .
- The results also indicate that

$$P_D(T_i) > P_{He}(2T_i)$$

 $P_{D} > P_{He}$ at same ion beta which deviate from prediction. Reasons may be fixed assumption and profile effects.

- The quantity k_{x_i} exceeds unity near the region where ion damping is strongest. Need to check ray paths with full kinetic geometric optics code.
- A complete scanning of parameter regimes, including N_{\parallel} , is being carried out to obtain detailed understanding of the results.