

Cost-Effective Spherical Torus Steps Toward Fusion Power

Martin Peng

Program Director

National Spherical Torus Experiment

Princeton Plasma Physics Laboratory on assignment from Oak Ridge National Laboratory

Third Symposium on Current Trends in International Fusion Research: Review and Assessment

March 8-12, 1999 Washington, D.C., U.S.A.

The Spherical Torus Innovation

- New DOE Facility and First Plasma
- Exciting New Science
- Cost-Effective Development

"better, faster, cheaper"

Potential Attractive Fusion Energy

A World-Class Innovative Fusion Experiment

Baseline Parameters

- Major radius
 - ≤ 85 cm
- Minor radius
 - ≤ **68** cm
- Plasma current
 - 1 MA
- Toroidal field
 - 0.3-0.6 T
- Heating and current drive
 - 6-11 MW
- Flat-top time
 - 5-1.6 s

DOE Assembled Excellent National Research Team from 14 Institutions

Columbia University

Fusion Physics & Technology, Inc.

General Atomics

Johns Hopkins University

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

Massachusetts Institute of Technology

Oak Ridge National Laboratory

Princeton Plasma Physics Laboratory

Sandia National Laboratory

University of California at Davis

University of California at Los Angeles

University of California at San Diego

University of Washington

NSTX Exceeded DOE Milestone 10 Weeks Ahead of Schedule

World Spherical Torus Experiments and Collaboration Have Grown Rapidly Since 1990

ST-Roadmap Current-Trends-Symp3, 3/8-12/99

Spherical Torus Magnetic Configuration Builds on Tokamak and Compact Toroid Knowledge

Advanced Tokamak

Compact Toroid

Concept Exploration in U.K. Reached New Record (~40%) in Average Toroidal β_t (1/98)

(Courtesy of START Team, U.K.)

- ORNL Beam ~ 0.4 0.7 MW
- Central β ~ 100%
- ~1/3 of NSTX Plasma Size

-12/99

ST-Roadmap $\mathbf{I}_{p}/\mathbf{a}\mathbf{D}_{T}$ (N

Spherical Torus Promises Exciting Fusion Science towards Practical Energy

SCIENCE → **POWER PLANT**

- New Startup Techniques → Simplified Magnets
- Order-Unity Beta → Low Device Cost
- Turbulence Suppression → Small Unit Size
- Self-Sustaining Current → Lowered Operating Cost

NSTX Research Program Aims to Test Scientific Principles for Attractive Fusion Core

- New Startup Technique: Coaxial Helicity Injection utilizes the mechanisms of magnetic reconnection, which is observed to be important in solar corona and geospace solar wind
- Order-Unity Beta: Stability of high-temperature, collisionless plasmas with such high betas is to be explored for the first time in large magnetic fusion energy experiment
- Turbulence Suppression: Key mechanism, so far observed in Tokamaks for Improved plasma confinement, is likely to be enhanced in ST by ~10 times → new physics
- Self-Sustaining Current: Magnetized "thermo-electricity" has been observed in Tokamaks; theoretically this can be extended in ST towards 100% with perfect profile alignment

Very High Flow Shear is Calculated in NSTX, Likely Suppressing Turbulence (Synakowski)

TFTR, DIII-D, JET, JT-60U, etc. observed improved confinement via sheared flow

Pressure-Driven, Fully Aligned Self-Sustaining Currents Are Calculated at High Stable β (Shaing)

TFTR, DIII-D, JET, JT-60U, etc. observed significant bootstrap current

We Envision Three Phases of Proof of Principle Research for the Initial Five Years

Current-Trends-Symp3, 3/8-12/99

Small Performance Extension Device Concept Draws From the NSTX and MAST Experience

Initial Features

- Target plasma: ~1 MA via solenoid, CHI, and/or ECH
- Pulse Length: time for slow noninductive current ramp up
- TFC Center Leg: multipleturns to use existing supplies
- Tiles: tungsten to avoid
 Tritium hold-up
- NBI Energy: existing ~100
 kV D⁰
- RF Frequency: existing ~60-80 MHz
- PF Coil Arrangement for κ
 ~3: similar to ST power core

ST Could Enable a Small Energy Technology Device, such as Volume Neutron Source (VNS)

(Dimensions in Meter)

ST Offers Cost-Effective Steps for Developing Fusion Plasma Science and Energy Technology

Neutron Fluence (MW-a/m²) per Year

Highly Modular Designs Are Envisioned for Future Spherical Torus Power Plant (UCSD)

S

Spherical Torus Fusion Research Is Exciting, Timely, and Affordable

- New NSTX Has Achieved First Plasma
- Exciting New Fusion Energy Science Will Be Explored
- Cost-Effective Development Path Has Been Identified

"better, faster, cheaper"

Potential Attractive Fusion Energy