
http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 1

Using IDL to Manipulate and Visualize
Scientific Data

IDL Introduction*

Table of Contents

Introduct ion
A brief introduction, with links to other valuable IDL sites.

Getting started
A few basic hints that will help you get started with the command line
interface and a link that will help you get idl running on your display.

Programs and batch mode
IDL can be run by typing commands interactively, by creating programs
interactively, by reading programs in from files, or it can be run in batch
mode.

Variables and arithmetic
Examples of setting scalar, vector, and array variables, and performing some
basic operations.

Matr ices
Examples of matrix operations.

Plots of Y vs. X
Plots of a function of one variable. One example also shows how to read
ASCII data from a file. You can see how to fit a polynomial to data. Also
included are examples with MDS access.

Surface plots
Examples of surface plots of functions of two variables. Included are
examples with MDS access.

Animat ion
Example animation

Hardcopy
How to save your images to a postscript file.

Gotchas
Some idiosyncrasies of IDL that you should know about.

Why do my graphics get erased?
When a window gets covered, then uncovered, someone has to keep a copy of
the obscured part of the image.

Other IDL Topics
How to find out more about IDL.

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 2

Introduction

IDL (the Interactive Data Language) is a general purpose scientific computing
package, sold by Research Systems Inc. (RSI), which provides a suite of
mathematical functions, data analysis tools, as well as some scientific
visualization and animation tools. It uses a command line interface and is fairly
robust. It is fairly easy to develop applications using point-and-click widgets, as
well. It does not have as large a market share as something like Matlab, but IDL is
used extensively in the Fusion community.

This tutorial is organized as a set of simple examples with explanations. It is only
a glimpse at what you can do with IDL. Once you start using it, you will want to
look at the online and/or hardcopy documentation, and explore.

The most effective way for you to go through this tutorial is by running IDL in a
separate window, and trying out the commands and programs as you read the
tutorial. Experiment with variations on these commands. Note what happens when
you make errors. Alternately, you may prefer using the IDL Basics manual over this
tutorial.

Getting started

First read about How to Setup IDL at PPPL. This will tell you on which machines
IDL is running, how to set up your environment, how to set your display, and how to
find documentation.

A few basic hints that will help you get started with the command line interface.

Type a question mark "?" for online help if you are running X. If you are running
Versaterm on VMS, type "$help idl" at the IDL prompt.

Try typing the following four commands at the IDL prompt:

 IDL> a = 5
 IDL> print, a
 IDL> a = [2, 3]
 IDL> print, a

Observe that commands are followed by a comma, before the parameter list.

To repeat a command, you can go up and down through previous commands using the

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 3

arrow keys. When you reach the command you want to repeat, hit return (this is
like VAX/VMS and the Unix tcsh shell).

IDL programs can be stopped using control-C. (Hold down the control key and hit
the letter c).

IDL can be aborted immediately using control-\. (All variables are lost and the
state of open files will be uncertain).

Programs and batch mode

IDL can be run by typing commands interactively, by creating programs
interactively, by reading programs in from the command line, or it can be run in
batch mode.

When you type commands on the command line, each line is executed immediately
when you hit the return key. (It is possible to carry over to the next line using a
dollar sign "$" at the end of the line).

Batch mode

Running in batch mode is similar, except the commands come from a file. You
precede the file name with the at-sign "@". Using your favorite editor, create a file
called batch_two_prints (in the directory from which IDL is running) that contains
the four lines

 a = 5
 print, a
 a = [2, 3]
 print, a

Type the following at the IDL prompt

 IDL> @batch_two_prints

This will execute the four commands exactly as if you had typed them. This can
also be done directly from your Unix shell, by typing

 % idl batch_two_prints

Programs

When typing interactively and running in batch mode, each line is executed
immediately. A problem arises with control statements that span lines. Consider

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 4

the following simple computation of the factorial function. As a batch file it
would look like:

 f = 1
 for k=1,6 do begin $
 f = k * f & $
 print, f & $
 end

The commands must be separated by ampersands "&", and the lines must be
continued. The entire loop must essentially be on one line, since each line is
executed as soon as it is encountered. Imagine nested loops with long calculations
inside.

As a program it is somewhat simpler:

 f = 1
 for k=1,6 do begin
 f = k * f
 print, f
 endfor
 end

Files can be created while you experiment with syntax and your algorithm by:

 IDL> journal,'mycode.pro'
 IDL> (many idl commands)
 IDL> journal

Then, edit out the unwanted lines in the file mycode.pro. Add a STOP and END
statement. Then .run the file.

Conversely, a good way to debug procedures or functions found in files is to copy
lines from them and paste them into an IDL session.

For more information on creating and running programs, including other commands,
see Chapter 2 of the User's Guide.

Variables and arithmetic

You can explicitly "type" variables, or not. IDL is very good about adapting
variables to the right type, even within procedures. See chapter 4 of the User's
Guide for more information on type conversion, etc. Try some of the following to
get used to the syntax.

The simplest thing to work with is scalars.

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 5

 IDL> y = 2.5
 IDL> z = x + y
 IDL> w = x^y + sin(z)
 IDL> print, x, y, z, w
 3 2.50000 5.50000 14.8829

Square braces are used to define vectors (1-dimensional arrays):

 IDL> v1 = [1, 2, 0]
 IDL> v2 = [1, 0, 0]
 IDL> print, "v1 = ", v1
 v1 = 1 2 0
 IDL> print, "v2 = ", v2
 v2 = 1 0 0

Vectors can be componentwise added, multiplied, etc.:

 IDL> v3 = v1 + v2
 IDL> print, "v3 = v1 + v2 = ", v3
 v3 = v1 + v2 = 2 2 0
 IDL> print, "v1 * v2 = ", v1 * v2
 v1 * v2 = 1 0 0
 IDL> print, "v1 * sin(v3) = ", v1 * sin(v3)
 v1 * sin(v3) = 0.909297 1.81859 0.00000

There are other useful operators, such as min and max:

 IDL> min1 = min(v1)
 IDL> max1 = max(v1)
 IDL> print, "min(v1), max(v1) = ", min1, max1
 min(v1), max(v1) = 0 2

Scalars and arrays can be allocated with specific types. Scalar examples:

 IDL> x = float(1.3)
 IDL> sx = fix(x)
 IDL> lx = long(x)
 IDL> bx = byte(x)
 IDL> dx = double(x)
 IDL> cx = complex(x)
 IDL> print, x, sx, lx, bx, dx, cx
 1.30000 1 1 1 1.3000000
 (1.30000, 0.00000)

Array examples:

 IDL> a = fltarr(5)
 IDL> for i=0, 4 do $
 IDL> a(i) = 2*i
 IDL> b = complex(a)
 IDL> print, "b = ", b
 b = (0.00000, 0.00000)(2.00000, 0.00000)

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 6

 (4.00000, 0.00000)(6.00000, 0.00000)
 (8.00000, 0.00000)

Matrices

A matrix (a 2-dimensional array) may be defined algorithmically:

 IDL> A = dblarr(2, 4)
 IDL> for i = 0, 1 do begin $
 IDL> for j = 0, 3 do begin $
 IDL> a(i, j) = 10 * i + j
 IDL> print, A
 0.0000000 10.000000
 1.0000000 11.000000
 2.0000000 12.000000
 3.0000000 13.000000

Note that as it is printed, the first index corresponds to the column, and the
second index to the row. Another way to think of it is that the way the data is
stored, the first index varies fastest, and the second varies the slowest. This
agrees with the way the data is printed.

The WHERE function can be extremely useful. Play around with it. (Continuing from
the above example:)

 IDL> print, WHERE(A GT 10 AND A LT 13)
 3 5

A matrix may be constructed explicitly from vectors:

 IDL> v1 = [1, 2, 0]
 IDL> v2 = [1, 0, 0]
 IDL> v3 = [4, 5, 6]
 IDL> A = [[v1], [v2], [v3]]
 IDL> print, A
 1 2 0
 1 0 0
 4 5 6

Create the transpose:

 IDL> Atrans = transpose(A)
 IDL> print, Atrans
 1 1 4
 2 0 5
 0 0 6

Take the determinant:

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 7

 IDL> d = determ(float(A))
 % Compiled module: DETERM.
 IDL> print, d
 -12.0000

Invert:

 IDL> Ainv = invert(A)
 IDL> print, Ainv
 0.00000 1.00000 0.00000
 0.500000 -0.500000 0.00000
 -0.416667 -0.250000 0.166667

Multiply vectors by matrices:

 IDL> v = [1, 2, 3]
 IDL> print, A
 1 2 0
 1 0 0
 4 5 6
 IDL> print, v
 1 2 3
 IDL> print, A ## v
 5
 1
 32
 IDL> print, v ## A
 15 17 18

You can solve a linear system Ax = b for x by Cramer's rule (the cramer function
expects float or double inputs, requiring an explicit type conversion):

 IDL> b = float([1, 2, 16])
 IDL> A = float(A)
 IDL> x = cramer(A, b)
 IDL> print, x
 2.00000 -0.500000 1.75000

Plots of Y vs. X

Two examples of plots of a function of one variable are listed below. Also check
out the examples with MDS access.

The program fit_y.pro reads in a set of 10 y values. It creates 10 x values from 0
to 9 suing the "findgen" command. It then fits a cubic to the data, and plots the
original data as points, and the fitted function as a curve.

; File: fit_y.pro - Author: Erik Brisson
N = 10

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 8

y = fltarr(N)
openr, 1, 'ex_y.dat'
readf, 1, y
close, 1
print, 'print y'
print, y
print, 'another way to print y'
for i=0, N-1 do begin
 print, y(i)
endfor
plot, psym=1, y
x =findgen(N)
ypoly = poly_fit(x, y, 3)
print, 'coefficients of third degree fit'
print, ypoly
yapprox = ypoly(0) + ypoly(1)*x + ypoly(2)*x^2 +
ypoly(3)*x^3
print, 'values of fit at corresponding x values' print,
yapprox oplot, yapprox
end

The program fit_xy.pro reads in a set of 10 (x,y) pairs, into a 2 x 10 array. It
separates them into two 1-dimensional arrays, and fits a cubic to it, and plots
this as in the preceding example.

; File: fit_xy.pro ; Author: Erik Brisson
N = 10
xy = fltarr(2,N)
openr, 1, 'ex_xy.dat'
readf, 1, xy
close, 1
x = xy(0,*)
y = xy(1,*)
print, 'x'
print, x
print, 'y'
print, y
plot, psym=1, x, y
ypoly = poly_fit(x, y, 3)
yapprox = ypoly(0) + ypoly(1)*x + ypoly(2)*x^2 + ypoly(3)*x^3
print, 'yapprox'
print, yapprox
oplot, x, yapprox
end

Surface plots

Also check out the contour examples with MDS access.

An example of drawing a surface plot directly, rendered as a wire mesh,

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 9

a = findgen(35)
b = 45 -findgen(45)
c = a # b
window, 0, retain=2, title='surf_wire',xsize=500, ysize=500
SURFACE, c

IDL provides an interactive viewer for surface plots, called xsurface.

XSURFACE,c

An example of drawing a surface plot directly, rendered as a shaded surface. ; File:
shade_surf.pro - Author: Erik Brisson

SHADE_SURF, c

These plots can be combined with various contour plots in various ways.

Producing surface plots from scattered data is demonstrated in hydro.pro. This is
data in which the (x,y) locations for which we have the function evaluated do not
lie on a regular gird. To make a surface plot, IDL needs to have the function
evaluated on a regular rectangular grid. There are two steps involved. The first is
to form a triangulation using the input (x,y) points to use for interpolation, and the
second is to produce a mesh from that interpolation. Another example, at
scv.bu.edu/SCV/Tutorials/IDL/examples/idl/pro/triangulate.pro, shows this
process and renders the result as a wire mesh surface plot.
http://scv.bu.edu/SCV/Tutorials/IDL/examples/idl/pro/tri_shade.pro, does the
same thing, and in addition, draws a shaded surface plot, using two different kinds
of shading.

Animation

One method of producing animation is to create a sequence of images and then
display them in order. This is quite easy using IDL.

; File: making_waves.pro - Author: Erik Brisson
pro making_waves
a = fltarr(256,3,63)
for i=0,255 do for j=0,2 do for k=0,62 do $
 a(i,j,k) = sin(float(i-k)/10.)/exp((float(i)/200.))
frames=bytarr(400,300,63)
window,retain=2,/free,title='making waves',xsize=400,ysize=300
for k=0,62 do begin $
shade_surf, a(*,*,k) & $
frames(0,0,k) = tvrd() & $
end
movie, frames, order=0
end

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 10

Hardcopy

You can save your plots and other images by rendering them to a postscript file
instead of to an X window. Basically, you set your plotting area to be a file, then
change the graphics device to be a postscript device, and close that device when
you are done:

 IDL> set_plot,'PS'
 IDL> device, filename='your_filename.ps'
 IDL> ...
 IDL> ... plot some stuff ...
 IDL> ...
 IDL> device, /close
 IDL> set_plot,'X'

Alternately, the local routines setup_ps and setup_x can span the plot commands
you want to send to a file when using x-windows. When using Versaterm on VMS at
PPPL, the SGLIB graphing system can be used, or the standard printing of Tektronix
files from Versaterm.

Gotchas

1. IDL leaves you in the procedure when an error is detected (unless the
ONERROR routine is called within the procedure). Enter RETALL to return to
the top-level.

2. Array indices are zero based, e.g.,

 a = BYTARR(100)
 FOR i=0,99 DO a(i) = i

3. If you don't use LONG(0), the maximum value is 64K, so:

 FOR i=LONG(0),100000 DO sum = sum+i

will give an error.
4. It may not be obvious how to read files written by other programs. There are

user routines to read columns of ASCII numbers.
5. > and < are not what they may seem.

 a = 5 < 3 ; sets a to 3 (the lesser value)
 a = WHERE (array < 2) ; sets a = array (if first element is < 2

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 11

 a = WHERE (array LT 2) ; is probably what you want

Why do my graphics get erased?

When a window gets covered, then uncovered, someone has to keep a copy of the
obscured part of the image. You may or may not want to have all the images saved
when they are obscured, by reasons of speed and memory.

In any case, this topic is called "backing store". It can be done by IDL, done by the
windowing system, or not done. By default, the X window system does not have
backing store turned on.

In IDL, there is a keyword RETAIN, for specifying which kind of backing store to
use.

RETAIN = 0 implies no backing store,
RETAIN = 1 IDL asks the window system to do it,
RETAIN = 2 IDL does it

This may be done on a per window basis, e.g.,

 window,0,retain=2,xsize=500,ysize=500

Backing store will now be maintained for this window by IDL.

How to find out more about IDL.

There is an excellent demo supplied with idl, which shows many of the advanced
things IDL can do. Just type "demo" at the IDL prompt.

You may also want to look at the IDL supplied examples in
/usr/local/rsi/idl/examples on Unix or IDL_DIR:[EXAMPLES] on VMS.

You should also visit these valuable IDL sites, especially the ones that let you
search for IDL routines written by others (no such search exists for fusion, or
PPPL-specific software, but it should).

Other examples are in the Class2 Directory. For a simple, but useful example of a
widget for plotting MDS signals, see mdsw_noch.pro

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 12

Return to the NSTX Software Page

*Borrowed heavily from http://scv.bu.edu/SCV/Tutorials/IDL/idl_webtut.html

h t tp : / / ns t x .ppp l . gov /ns t x /So f twa re / i d l _ i n t ro .h tm l
Edited for NSTX: 01-Feb-1999
by: Bill Davis

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 13

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 14

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 15

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 16

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 17

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 18

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 19

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 20

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 21

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 22

)

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 23

http://NSTX.pppl.gov/nstx/Software/IDL/
idl_intro.html#GOTCHAS

IDL Introduction Monday, February 1, 1999

Page: 24

