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Abstract. This paper presents the development of a model-based multiple-input-

multiple-output algorithm for real-time feedback control of snowflake divertor

configurations on the National Spherical Torus eXperiment Upgrade (NSTX–U). A

linearized time-varying model of the snowflake configuration response to applied

voltages on the divertor control coils is derived and then used, in conjunction

with multivariable control synthesis techniques, to design an optimal state feedback

controller for the configuration. Control system performance is then validated using a

closed-loop simulator that evolves linear models of the coil and vessel current dynamics

simultaneously with the free-boundary plasma equilibrium. Simulations demonstrate

that the algorithm enables controlled operations in a variety of snowflake configurations

and provides capabilities for accurate tracking of time-dependent reference trajectories

for the divertor configuration.
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1. Introduction

The National Spherical Torus eXperiment Upgrade (NSTX–U) [1] is a mega-ampere

grade spherical tokamak (ST) at the Princeton Plasma Physics Laboratory (PPPL) that

has been constructed to enhance the physics and engineering understanding required for

building future ST-based fusion devices, such as those intended for studying plasma-

material interactions [2], testing nuclear reactor components [3], and demonstrating

fusion power generation [4]. NSTX–U is designed to improve upon the performance of

prior STs such as NSTX [5] and the Mega-Ampere Spherical Tokamak (MAST) [6] and

will enable access to new plasma regimes for the study of critical issues such as the scaling

of energy confinement with electron collisionality, the physics of fast particles, and the

efficiency of methods for non-inductive current drive in high-β scenarios. Significant

upgrades to the NSTX–U device were recently completed, including the installation of

a larger-diameter centerstack and a second neutral beam injection system. The new

centerstack, which contains the inner legs of the toroidal field (TF) coils, the Ohmic

heating (OH) solenoid, and several plasma shaping coils, provides higher fluxes and fields

for increasing plasma confinement and extending the duration of plasma discharges. The

second neutral beam injector increases the auxiliary heating power (5 to 10 MW) and

current drive and is aimed more tangentially, thereby enabling greater control of the

spatial distribution of heating and current. The upgrades will increase the nominal TF

from 0.5 to 1T, the maximum plasma current from 1 to 2 MA, and will enable plasma

discharge durations of up to 5s.

1.1. Motivation for advanced divertor configurations on NSTX–U

Routine plasma operations in high-performance scenarios (2 MA, 1T, 10 MW) is a

crucial prerequisite for achieving many of the goals of the NSTX–U research program.

As a primary example, higher plasma current and toroidal field are required on NSTX–U

to distinguish between conventional aspect ratio and ST confinement time scaling, and a

corresponding increase in input heating power is required for achieving sufficient plasma-

β at these higher currents and fields. Furthermore, a target discharge duration of 5s is

motivated by a need to ensure sufficient current profile equilibration in high confinement,

low density plasma regimes [7]. A consequence of these device requirements is that a

variety of novel technologies and operational strategies will be needed for achieving

safe and reliable high-performance discharges on NSTX–U. Since the early stages of

the upgrade, it has been recognized that one of the most critical issues for NSTX–U

will be the power loading of plasma-facing components (PFCs) in the divertor region.

While heat flux management is a concern for many current and future devices, it is of

particular importance for STs due to their compact size. In [1], it was shown that in

the NSTX–U high-performance scenario with 2 MA, 10 MW, and 5s pulse length, the

peak heat flux on divertor surfaces cannot exceed 10 MW/m2 without compromising the

structural integrity of the radiatively-cooled PFCs. Since the start of NSTX–U plasma

operations, the requirements for heat flux mitigation have grown more stringent as the
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design of the divertor PFCs is re-evaluated during the NSTX–U recovery project. This

analysis incorporates more recent developments in the fusion community, including the

identification of significant uncertainty in the scaling of the heat flux width λq for STs.

Indeed, the projected values of λq for NSTX–U as computed by several recently-proposed

empirical and semi-empirical models vary by up to a factor of two [8, 9, 10, 11], thereby

leading to a corresponding uncertainty in the peak power deposited on the divertor.

A combination of heat flux mitigation strategies is currently planned for use on

NSTX–U, including controlled sweeping of the divertor strike point to vary the location

of peak power loading, operating in a double-null configuration to enable sharing of

the power exhaust between the up-down symmetric divertor PFCs, and adding divertor

fueling capabilities to increase the radiated power fraction. Another promising means of

reducing the peak heat flux on divertor PFCs is the use of so-called advanced divertor

configurations, such as the snowflake divertor [12], X-divertor [13], super-X divertor

[14], and X-point target divertor [15], all of which are magnetic topologies that differ

in some way from that of the standard axisymmetric X-point divertor. In particular,

the snowflake divertor (SFD) is being considered as one component of an integrated

power exhaust solution on NSTX–U. The exact SFD configuration has a second-order

null on the primary separatrix and is characterized by a magnetic topology with a

hexagonal structure resembling a snowflake. Due to the extreme sensitivity of the

exact SFD configuration to small deviations from the electric current distribution that

defines this equilibrium, one of two alternative configurations is generally observed:

(1) the snowflake-plus configuration with a primary X-point on the separatrix and a

secondary X-point in the private flux region, and (2) the snowflake-minus configuration

in which the secondary X-point lies in the scrape-off layer (SOL). Figure 1 depicts three

simulated snowflake equilibria on NSTX–U, including the required coil currents for each

configuration, as well as a standard single-null equilibrium for comparison.

As summarized in [16], the SFD has several properties that are advantageous for

reducing divertor PFC heat fluxes: Due to the reduced poloidal field magnitude in

the null region, the SFD exhibits stronger flaring of magnetic field lines and increased

poloidal flux expansion relative to the standard divertor. The result is a greatly increased

plasma wetted-area and a corresponding decrease in the peak heat flux. The need for

high flux expansion divertors to mitigate power exhaust is the primary motivation for the

development of SFD scenarios on NSTX–U. Additional properties of the configuration

include a significantly longer X-point connection length, leading to an increase in the

temperature drop and radiative losses in the SOL, and the presence of additional strike

points across which the power exhaust can be partitioned. In recent years, the SFD

has been the subject of investigations on several devices [17, 18, 19, 20], all of which

have provided experimental confirmation of many favorable properties of the snowflake

magnetic configuration. In particular, the SFD was integrated into H-mode scenarios

on NSTX (prior to the upgrade). It was determined using equilibrium reconstructions

of 1 MA, 0.5T, 5 MW NBI-heated discharges that the flux expansion in the SOL was

nearly four times higher than in the standard divertor, while the X-point connection
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Figure 1. Several divertor configurations on NSTX–U as computed by a free-boundary

equilibrium solver with Ip = 1 MA, βp = 1.0, and li = 0.6. Shown are (a) the standard

single-null divertor, (b) the exact snowflake configuration with a second-order null, (c)

the snowflake-plus configuration with a secondary null in the private flux region, and

(d) the snowflake-minus configuration with a secondary null in the scrape-off layer.

Also shown are the divertor coils and coil currents for each configuraton.

length was double that of the standard configuration. The existence of these favorable

magnetic properties was accompanied by a significant reduction in the peak heat flux

on the divertor (from roughly 5 to 1 MW/m2) as measured by infrared diagnostics.

Furthermore, no degradation of core and pedestal performance, as quantified by metrics

such as confinement time, βN , and stored energy, was exhibited during plasma operations

in the snowflake configuration. Future experiments will seek to assess the performance

of the SFD at the higher current, field, and input heating power that are projected for

NSTX–U.

1.2. Overview of magnetic control for the snowflake divertor

While the SFD may prove to be an enabling technology for NSTX–U (as well as for future

devices such as ITER and DEMO [21]) due to its favorable magnetic field properties,

the snowflake configuration presents new challenges for real-time plasma operations. In

particular, it has been recognized since the advent of the SFD concept that feedback

control is required to regulate the configuration during plasma discharges due to the

inherent complexity of the SFD magnetic topology and the control limitations stemming

from the coil configurations on most tokamaks. Due to the sensitivity of the second-order

field null in the exact SFD, one must normally account for the locations of two closely-

spaced X-points in the SFD-plus or SFD-minus configurations. Unlike in the standard

divertor configuration, the proximate X-points of the SFD present two candidates for
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the flux which defines the plasma boundary. While of little consequence for the global

shape and positioning of the plasma due to the shallow field gradients in the vicinity of

the X-points, the identity of the boundary-defining point in the snowflake configuration

has a significant impact on divertor performance since a modification of the boundary

flux can cause a large shift in the locations of active strike points. Furthermore, the

relative positioning of the two X-points, quantified by parameters such as the inter-

null distance and the orientation of the line segment connecting the nulls (roughly

speaking, the radius and angle in a polar coordinate system), determines critical SFD

properties such as flux expansion, connection length, and power exhaust partitioning

among strike points. Aside from the intrinsic geometric complexities of the SFD, it is

often the case that fewer shape control coils are available on a particular device than

are required for simultaneous control of all parameters that define the configuration.

In most cases, there is also significant cross-coupling between the divertor control coils.

The unique challenges presented by the SFD for real-time control therefore motivate the

development of a sophisticated multiple-input-multiple-output (MIMO) divertor control

algorithm for the snowflake configuration.

Over the last several years, various solutions to the SFD control problem have

been proposed and tested experimentally. TCV has used extensive offline modeling to

determine coil currents that are consistent with desired snowflake equilibria [17]. The

coil currents are then pre-programmed as targets for the control system to track during

real-time operations. On NSTX, the first experiments in which the SFD configuration

was achieved employed a combined feedforward-feedback hybrid approach in which

the primary divertor coils were used to control the locations of the inner and outer

strike points, while the currents in secondary coils were modified in a gradient-search

fashion to determine values of the plasma squareness ζ and δRsep that were consistent

with a snowflake equilibrium [22, 23]. Based upon modeling of SFD configurations on

NSTX using the free-boundary Grad-Shafranov equilibrium code ISOLVER [24], it was

determined that the use of three divertor coils would enable refined control of the SFD. In

further experiments on NSTX, therefore, a primary divertor coil was used in a feedback

loop to control the location of the primary X-point, while two secondary coils executed

pre-programmed current ramps to push the secondary X-point into the vacuum vessel

[18]. These combined feedforward-feedback control approaches on NSTX were sufficient

for achieving transient snowflakes but were unable to mitigate effects of disturbances on

the configuration such as variations in the plasma inductance, edge current, and eddy

currents in divertor structures. The first entirely closed-loop feedback control algorithm

was developed and deployed on DIII–D [25]. The control scheme was capable of locating

the SFD in real-time using a non-iterative X-point finder based upon series expansions

of the magnetic field structure in the divertor region. A linear time-varying model

relating changes in the divertor coil currents to changes in the snowflake geometry was

used in-the-loop to compute the coil currents required for achieving a desired snowflake

configuration. The algorithm was able to achieve stable plasma operations in a variety

of configurations, including SFD-minus, SFD-plus, and near-exact snowflakes.
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1.3. Paper outline

In this paper, we present a model-based, multiple-input-multiple-output (MIMO)

algorithm that has been developed for real-time feedback control of snowflake divertor

configurations on NSTX–U. The goal of this work is to develop an improved control

scheme to address many of the limitations of the feedback algorithm as originally

deployed on DIII–D. As identified in [25], desirable characteristics of an upgraded control

system include capabilities for independent control of the locations of the primary and

secondary X-points, higher fidelity modeling of the snowflake configuration response

which includes the effects of plasma current redistribution on the positions of the two

magnetic nulls, and model-based gain selection that minimizes the time required for

gain optimization during plasma operations. The remainder of this paper is organized

as follows: In Section 2, we derive a linear time-varying (LTV) model that describes the

response of the snowflake geometric configuration to applied voltages on the divertor

control coils. The primary components of the model are a set of coupled circuit equations

describing the time-dynamics of the coil currents, a series approximation that models the

response of an X-point position to changes in poloidal field structure, and a linearized

model of the plasma response to changes in the poloidal field (PF) coil currents. In

Section 3, we use the LTV model along with standard linear control synthesis techniques

to design an optimal state feedback controller for the snowflake configuration. In Section

4, we present results of time-dependent, closed-loop simulations in which the controller

is used to achieve and maintain a variety of SFD configurations of interest for future

NSTX–U operations. Finally, in Section 5, we summarize our work and discuss plans

for future control development.

2. System modeling for the snowflake divertor

The typical starting point for any control system design is the generation and validation

of a model that describes the system dynamics of interest with sufficient accuracy. For

this work, we seek a model that accurately describes the time-response of a set of

geometric parameters that define the snowflake configuration to applied voltages on the

divertor control coils. In particular, our goal is to derive a linear model in so-called

state-space form,

δẋ = A(t) δx + B(t) δv, (1a)

δy = C(t) δx + D(t) δv, (1b)

where v is a vector that contains the values of the system actuator inputs, y is a vector

that contains measurements of the system outputs, and x is a vector that contains a

set of system parameters that uniquely define the dynamical state of the system. We

note that the elements of x are, in general, not directly measureable. For the SFD, it

will be shown in Section 2.1 that the inputs v are the coil voltages, the states x are

the coil currents, and the outputs y are the snowflake shape descriptors. In (1a) and

(1b), the symbol δ indicates that the aforementioned vectors are measured relative to
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Figure 2. Illustration of the lower divertor on NSTX–U showing the limiter

surface (black contour), the poloidal field coils available for snowflake divertor (SFD)

control, and the shape parameters used to specify the geometry of the SFD magnetic

configuration in the control system.

their values at some initial state. For the linear model of the snowflake configuration,

the initial state will always be a set of PF coil currents and voltages that define a

plasma equilibrium. Our primary task in this section is to identify the components

of the (generally time-dependent) matrices A(t), B(t), C(t), and D(t) for the SFD

system. Two common approaches to model identification are the data-based method,

e.g. [26, 27], and the method which employs first-principles physics arguments, e.g.

[28, 29]. In this paper, we choose to develop a linear model for the SFD based upon

first-principles physics as the resulting model can easily be adapted to a variety of plasma

scenarios and machine configurations. In particular, if the resulting model can be made

sufficiently tractable, it is feasible for the control system to update the model parameters

in real-time to account for the evolving plasma state. This capability enables the use

of high-performance feedback control schemes such as real-time gain optimization and

predictive control.

As actuators for the SFD configuration, the control algorithm presented in this work

uses a set of three PF coils located in the divertor region. One of the notable aspects

of the upgrade to NSTX–U was the installation of a new set of PF coils in the upper

and lower divertor regions of the device, as depicted in Figure 2 for the lower divertor.

The upgraded coil sets include an additional coil in each divertor region, relative to

the coil configuration on NSTX prior to the upgrade, that were specifically designed

for control of advanced divertor configurations such as the SFD. The additional coils

provide improved shaping capabilities and are particularly important for maintaining

the snowflake configuration at the current limits of the Ohmic solenoid (±24 kA) during

long-pulse inductive scenarios. As the PF1b coils will likely be unavailable during the

first several years of NSTX–U operations, we have chosen to use the PF1a, PF1c, and

PF2 coils as actuators for the snowflake configuration. In this paper, we develop a control
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algorithm for SFD configurations in the lower divertor of NSTX–U (and therefore will

be using the PF1aL, PF1cL, and PF2L coils for control). However, the algorithm is

directly applicable to control of upper divertor snowflakes as the device is up-down

symmetric. We also note that, since the model presented in this section is derived from

first-principles physics arguments, the model as well as the control algorithm presented

in Section 3 can likely be adapted for use on other devices with only minor modifications.

The duration of this section is organized as follows: In Section 2.1, we present

the derivation of an equation of the form (1a) that describes the dynamics of the PF

coils used to control the snowflake configuration on NSTX–U. The modeling framework

presented in this section is widely used for tokamak magnetic control development and is

discussed extensively elsewhere [30, 31]. We provide an outline of the modeling approach

in this section as the results will be needed for design of the controller in Section 3. In

Sections 2.2 and 2.3, we continue by deriving (1b) for the SFD system.

2.1. Linear MIMO model development for snowflake control

In this section, we present the development of a dynamical model for the SFD which

will be used in Section 3 to design a model-based MIMO feedback controller for the

configuration. In particular, we seek a model that accurately describes the dynamics that

are relevant for control of the magnetic geometry in the divertor. As the axisymmetric

plasma shape and divertor configuration are determined, in general, by the instantaneous

values of all toroidal electric currents in the system, the primary dynamics of interest are

the time responses of the currents in all toroidally axisymmetric conductors to applied

voltages on the PF coils. To simplify the model used for control design, we include only

the equations for the currents in divertor control coils and neglect currents induced in

any nearby conducting structures such as the vacuum vessel. We will, however, include

induced currents in a higher fidelity model used in Section 4 for system simulation and

controller validation. In addition, we make the standard assumption that the plasma

remains in force-balance on all time scales of interest for shape control.

To derive the equations which govern the divertor coil dynamics, we employ a

standard formalism in the field of tokamak magnetic control in which the coils are

modeled as inductively-coupled lumped parameter circuits,

Mccİc + Ψ̇cp + RcIc = Vc, (2)

where Mcc is the coil-to-coil mutual inductance matrix, Rc is a diagonal matrix

containing the resistances of the coil circuits, Ic and Vc are vectors containing the

currents within and voltages applied to the divertor coils, respectively, and Ψ̇cp

represents the change in magnetic flux at the coils due to spatial redistribution of the

plasma current. In general, the term Ψ̇cp is a nonlinear function of the coil and plasma

currents and must be determined by solving the free-boundary Grad-Shafranov problem.

To obtain an LTV model of the form (1a) and (1b), we linearize Ψ̇cp around a reference
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plasma equilibrium as follows,

Mcc δİc +

(
∂Ψcp

∂Ic

∣∣∣∣
eq(t)

)
δİc + Rc δIc = δVc, (3)

where we have shifted the coordinate system origin such that the coil currents Ic and

voltages Vc are measured relative to their equilibrium values. The quantities δIc and

δVc must remain small to ensure the validity of the linearization. By re-arranging the

expression in (3), we find that,

M̂(t) δİc + Rc δIc = δVc, (4)

where we have defined,

M̂(t) = Mcc +
∂Ψcp

∂Ic

∣∣∣∣
eq(t)

, (5)

which is a combination of a time-independent matrix Mcc, which contains the vacuum

mutual inductances between the divertor coils, and a matrix ∂IcΨcp, which represents

an effective mutual inductance due to magnetic flux changes that result from a

redistribution of the plasma current. The matrix ∂IcΨcp is, in general, time-dependent

as the response of the plasma may change as the discharge evolves. The expression (4)

is simple to convert into the state-space form (1a),

δİc = A(t) δIc + B(t) δVc, (6)

where the matrices A(t) and B(t) are defined as follows,

A(t) = −
[
M̂(t)

]−1
Rc, (7a)

B(t) =
[
M̂(t)

]−1
, (7b)

and the coil currents and voltages in vectors δIc and δVc are measured relative to their

values in the equilibrium that was used to compute the response ∂IcΨcp. We discuss

several approaches to computing this response matrix in Section 2.3.

To derive equation (1b), we must first define the output vector y by identifying

a suitable set of model outputs that we wish to control directly via the feedback

algorithm. For the SFD, we choose to control the Cartesian coordinates of the snowflake

centroid, denoted as (rc, zc), as well as the parameters (dR, dZ), which are the radial and

vertical displacements of the primary X-point from the centroid. This choice of output

vector is motivated by the realization in prior work that the control of certain divertor

configurations, particularly the SFD-minus, is subject to significant ambiguity if the

position of the primary X-point is not accounted for directly. In particular, there exist

two distinct magnetic configurations that are classified as SFD-minus, one in which the

secondary X-point lies in the high-field-side SOL, and another in which the secondary

X-point lies in the low-field-side SOL. During previous experiments devoted to SFD

control development, it was observed that the SFD-minus may transition unpredictably
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between these two configurations if the control system is not specifically configured

to prevent this behavior [25]. In this work, we directly control the location of the

primary X-point, defined by the parameters (dR, dZ), in order to remove this source

of ambiguity. We also note that this parameterization of the SFD configuration is not

unique. Two other shape parameters that will be referenced in this work (though not

controlled directly) are the snowflake radius ρ, defined as half the distance between the

two X-points, and angle θ, defined as the angular orientation of the primary X-point

relative to the vertical direction. An illustration of all snowflake shape descriptors used

in this paper is provided in Figure 2.

After selecting the set of snowflake shape descriptors, we can define the output

matrix C(t) in (1b) as follows,

C(t) =




∂Icrc

∂Iczc

∂IcdR

∂IcdZ



, (8)

where the operator ∂Ic denotes partial differentiation with respect to each of the control

coil currents. Each row of C(t) can be computed separately as follows,

∂Icrc = ∂Brc (∂IcB + ∂JB · ∂IcJ) , (9a)

∂Iczc = ∂Bzc (∂IcB + ∂JB · ∂IcJ) , (9b)

∂IcdR = ∂BdR (∂IcB + ∂JB · ∂IcJ) , (9c)

∂IcdZ = ∂BdZ (∂IcB + ∂JB · ∂IcJ) . (9d)

In (9a) through (9d), the first terms that contain partial derivatives ∂B represent

the linearized responses of the snowflake shape descriptors to changes in the poloidal

magnetic field. The terms in parentheses that contain partial derivatives ∂Ic represent

the linearized response of the poloidal magnetic field to changes in the control coil

currents. This response consists of two distinct components: The term ∂IcB represents

the direct response of the field to coil current changes and is independent of the plasma

configuration. The elements of ∂IcB can be computed from the mutual inductances

between the coils and a spatial grid of points at which the field is evaluated. In (9a)

through (9d), the term ∂JB represents the linear change in poloidal field that results from

a redistribution of the plasma current (which is caused by changing the coil currents),

while ∂IcJ quantifies the change in plasma current distribution due to the coils. These

values must be computed from an assumed model of the plasma response. We discuss

several methods for performing this calculation in Section 2.3.

2.2. Modeling of the X-point position response

In order to determine analytical formulas for the linearized responses of the snowflake

shape descriptors to changes in the poloidal field, we compute the response of a standard

first-order null and then use this expression to determine the responses of the two nulls



Control system development for the snowflake divertor on NSTX–U 11

of the SFD configuration. One method for obtaining an analytical formula for the X-

point response is to first approximate the field structure in the vicinity of the null by

solving the toroidal component of Ampère’s law,

(r0 + x)
∂

∂x

(
1

r0 + x

∂ψ

∂x

)
+
∂2ψ

∂v2
= 0, (10)

where ψ (x, z) is the poloidal magnetic flux function, x is the radial coordinate relative

to the position r0, and v is the vertical coordinate relative to the position z0. The

coordinates (r0, z0) can be chosen arbitrarily subject to the constraint that this point

lies close to the X-point. The flux function is related to the radial, Br, and vertical, Bz,

components of the magnetic field through the following relations,

Br = − 1

r0 + x

∂ψ

∂v
, (11a)

Bz =
1

r0 + x

∂ψ

∂x
. (11b)

In (10), we have assumed that the current density in the divertor region is small and

therefore can be neglected. As shown in [32] for the case of a second-order null, finite

current density effects can be included in the derivation if desired. However, we have

found that the simplifying assumption of zero toroidal current provides an adequate

model for controller design.

We next expand the flux function as a series to second-order,

ψ (x, v) = l1x+ l2v + q1x
2 + 2q2xv + q3v

2, (12)

where we have neglected the constant term as it does not contribute to the components

of the poloidal field. Upon substituting (12) into (10) and equating the constant term

to zero, we obtain one constraint on the expansion coefficients that must be satisfied for

any field configuration,

l1 = 2r0 (q1 + q3) . (13)

Furthermore, by substituting (12) into (11a) and (11b) and employing (13) to eliminate

the l1 coefficient, we obtain formulas for the poloidal field components Br and Bz,

Br = − 1

r0 + x
(l2 + 2q2x+ 2q3v) , (14a)

Bz =
1

r0 + x
(2(r0 + x)q1 + 2q2v + 2q3r0) , (14b)

which are linear functions of the l2, q1, q2, q3 series coefficients. These coefficients can be

determined provided that the values of Br and Bz at two points in the vicinity of the

X-point are known. During plasma operations, the magnetic field values can typically

be obtained from a real-time equilibrium reconstruction algorithm.

After computing the expansion coefficients, we may calculate the (r, z) coordinates

of the X-point by setting Br = Bz = 0 and solving the resulting equations for the radial
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and vertical coordinates. We obtain the following,

rx = r0 +
l2q2 − l1q3

2 (q1q3 − q22)
, (15a)

zx = z0 +
l2q1 − l1q2

2 (q22 − q1q3)
. (15b)

The X-point coordinates (15a) and (15b) can be easily differentiated to determine the

desired response of the X-point position to changes in the poloidal field. Differentiating

with the chain rule results in the following,

∂Brx = ∂crx · ∂Bc (16a)

∂Bzx = ∂czx · ∂Bc (16b)

where the operator ∂c denotes partial differentiation with respect to the expansion

coefficients. The terms ∂crx and ∂czx are computed directly from (15a) and (15b), while

∂Bc is the inverse of the matrix that was used to compute the expansion coefficients

from the field measurements.

In order to obtain the response of the SFD configuration to changes in the poloidal

magnetic field, we first compute the individual response of each X-point, located at the

coordinates (rx1 , zx1) and (rx2 , zx2), respectively. The responses of the snowflake shape

descriptors, as required in (9a) through (9d), are then computed as follows,

∂Brc = (∂crx1 + ∂crx2) /2, (17a)

∂Bzc = (∂czx1 + ∂czx2) /2, (17b)

∂BdR = (∂crx1 − ∂crx2) /2, (17c)

∂BdZ = (∂czx1 − ∂czx2) /2. (17d)

2.3. Rigid plasma response modeling

The remaining task in the SFD modeling procedure is to compute the derivatives that

quantify the linear response of flux and field to changes in the distribution of toroidal

plasma current. In particular, we require the matrix ∂IcΨcp in (3) as well as the terms

∂JB and ∂IcJ in (9a) through (9d). The approach that is taken to obtaining these

derivatives can be better understood by first decomposing ∂IcΨcp as follows,

∂Ψcp

∂Ic
=
∂Ψcp

∂ξr

∂ξr
∂Ic

+
∂Ψcp

∂ξz

∂ξz
∂Ic

, (18)

where ξr and ξz are plasma fluid element displacement vectors in the radial and vertical

directions, respectively. The evaluation of the required derivatives therefore necessitates

the calculation of ∂Icξr and ∂Icξz, the response of the plasma fluid elements to changes

in the coil currents.

One of two modeling formalisms is typically employed for this purpose: (1) Under

the rigid plasma assumption, the plasma current distribution is constrained to move

rigidly in the radial and vertical directions such that the relative distribution of plasma
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current in the poloidal plane remains constant. The response of the plasma is therefore

completely defined by the responses of rC and zC , the radial and vertical coordinates of

the plasma current centroid (not to be confused with rc and zc, the coordinates of the

SFD centroid). (2) In contrast to the rigid plasma constraint, the plasma fluid elements

may be allowed to move independently in both the radial and vertical directions. The

total plasma response is therefore determined by the individual displacements of all

fluid elements. This response model is often referred to as the nonrigid or perturbed

equilibrium model as the model requires the solution of a perturbed form of the Grad-

Shafranov equation. It should be emphasized that, in both the rigid and nonrigid

models, the assumption is made that all plasma displacements occur in a manner that

conserves either a global or local form of force-balance. Further discussion of both rigid

[26, 31] and nonrigid [33, 34] response models can be found in the relevant literature.

For SFD control development, we choose to model the plasma as a rigid body

due to the relative simplicity of this approach. Our problem is therefore reduced from

the calculation of ∂Icξr and ∂Icξz to the calculation of ∂IcrC and ∂IczC . The response

matrices are then used to construct the remaining unknown derivatives in (3) and (9a)

through (9d). For details of this procedure, the reader may refer to Appendix A.

3. Controller design for the snowflake divertor

In this section, we use the linear model developed in Section 2 to design a feedback

controller for the SFD configuration on NSTX–U. The resulting control algorithm is

constructed from three primary components: (1) a feedforward gain matrix, which is

used to estimate the PF coil voltages and currents required to achieve the desired SFD

configuration, (2) a full-state feedback control law, which generates a set of voltage

commands for the PF coils that is proportional to the error between the target and

present values of the coil currents, and (3) an integral feedback term, which improves

tracking of the reference SFD configuration in the presence of modeling uncertainties

and system disturbances by minimizing the integrated error between the desired and

present values of the snowflake parameters. In Section 3.1, we provide an overview of

the control scheme and derive the control law that is used for generating appropriate

voltage commands for the PF coils. In Section 3.2, we compute feedback gains for the

control system using a standard control design technique known as the linear quadratic

regulator. Finally, in Section 3.3, we describe how the state feedback control scheme can

be augmented with integral action to ensure proper tracking of the reference snowflake

configuration. A block diagram illustrating the major components of the control system

and their interconnections is provided in Figure 3.

3.1. State feedback with reference tracking

The objective of the control algorithm is to command the system to a desired state

vector xd that corresponds to a set of desired system outputs yd. In the particular case
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Figure 3. Block diagram depicting the data flow through the snowflake divertor

control system on NSTX–U. The control law is the sum of three primary components:

(1) a feedforward term with gain matrices Fu and Fx, (2) a state-feedback control law

for obtaining the desired PF coil currents with optimal gain matrix K computed by

the LQR algorithm, and (3) an integral term with gain matrix KI for achieving zero

steady-state error in the snowflake shape descriptors.

of the SFD, the desired states are the coil currents and the desired outputs are a set of

shape parameters which define the desired SFD configuration. The goal of the control

algorithm should therefore be to minimize the state error e = x − xd, the difference

between the present and desired values of the state vector (coil currents). Using (1a),

the error dynamics can be computed as,

ė = A(t)e + B(t)u, (19)

where u = v − vd, the difference between the present and desired values of the input

voltage vector. Using (19), we can then design a state feedback controller of the following

form,

u = −K(t)e, (20)

where K is a matrix of feedback gains with dimension m×n, where m is the number of

inputs and n is the number of states. The product of K and e shall therefore produce

a set of appropriate voltages u for the coils which will result in a minimum state error.

Using (20), the total input to the system is as follows,

v = K(t) (xd − x) + vd. (21)
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The remaining task is to compute the desired state vector xd and the desired input

vector vd, which we shall refer to hereafter as the feedforward state (coil current) and

input (voltage) vectors. This is accomplished as follows: When the system reaches a

steady-state (ẋ = 0), the system output vector y should equal the desired value yd.

Using (1a) and (1b), the following conditions are therefore satisfied,

0 = A(t)xd + B(t)vd, (22a)

yd = C(t)xd, (22b)

where we have assumed that D(t) = 0, as is true for the SFD system. Upon solving

(22a) and (22b), we obtain,

xd = C†(t) yd, (23a)

vd = −B−1(t)A(t)C†(t) yd, (23b)

where the symbol † denotes the matrix pseudoinverse. The expressions (23a) and (23b)

are then used to define the following feedforward gain matrices,

Fx = C†(t), (24a)

Fu = −B−1(t)A(t)C†(t), (24b)

where Fx is the feedforward state matrix and Fu is the feedforward input matrix.

Since the linearized model (1a) and (1b) is only valid for small perturbations about

the defining equilibrium, it should be emphasized that all vector quantities in this

section are measured relative to their equilibrium values. The inputs and outputs

to the control algorithm must therefore be measured in the perturbed coordinate

system by addition or subtraction of the corresponding equilibrium quantities. For the

sake of simplicity, we have refrained from expressing (19) through (24b) in perturbed

coordinates. However, the required coordinate system shifts are depicted explicitly in

Figure 3, where (v0,x0,y0) are the equilibrium values of the input, state, and output

vectors, respectively. As the model (1a) and (1b) is time-varying, we also note that the

control system parameters, such as the feedforward and feedback gain matrices, should

be updated periodically to account for changes in the system dynamics.

3.2. LQR optimal control design

The control law as formulated in (20) and (21) requires that a matrix of feedback control

gains K be computed which converts a vector of state errors to a vector of coil voltage

commands. For this purpose, we employ a common technique in control system design

known as the linear quadratic regulator (LQR). The algorithm computes a matrix of

feedback gains K which minimize the following quadratic cost function,

J =

∫ ∞

0

(
eTQe + uTRu

)
dt, (25)

where e and u are the error and input vectors, respectively, as defined in the previous

section, and Q and R are symmetric, positive-definite weighting matrices with entries
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that are defined by the control designer. It can be shown that the optimal gain matrix

K which minimizes (25) is given by,

K = R−1BTP, (26)

where P is a symmetric, positive-definite matrix that satisfies the matrix equation,

ATP + PA−PBR−1BTP + Q = 0. (27)

This equation is known as the algebraic Riccati equation and is solved iteratively using

standard algorithms in commercial software packages such as MATLAB. More details

pertaining to state feedback control design and the LQR algorithm may be found in

standard reference works [35, 36, 37].

3.3. Integral action

It is well known that the control system as formulated by the feedback law (21) will

often perform poorly when attempting to track nonzero reference trajectories for the

system outputs. The source of this deficiency is the absence of a term in (21) that is

dependent upon the errors between the measured and desired system outputs. Rather,

output tracking is accomplished indirectly by computing the feedforward currents and

voltages in (23a) and (23b) at which the system outputs assume their desired values.

This approach therefore requires a highly accurate model of the system dynamics and is

unable to compenstate for modeling uncertainties or system disturbances. A commonly-

employed remedy is to augment the system state vector with a term that depends

explicitly on the output tracking errors [38]. In particular, we may introduce a new

state z, which is defined as the integral of the error between the desired and measured

system outputs,

z =

∫ t

0

(yd − y) dτ. (28)

The dynamics for the augmented system are as follows,

d

dt

[
x

z

]
=

[
A(t) 0

−C(t) 0

][
x

z

]
+

[
B(t)

0

]
v +

[
0

I

]
yd, (29)

where I is the identity matrix. The feedback control law for the augmented system can

therefore be expressed as,

v = K(t) (xd − x) + KI(t) z + vd. (30)

where K is the matrix of state feedback gains as computed in Section 3.2 and KI is an

additional set of gains for the error integrals. We note that, if the closed-loop system

is stable, there will exist a steady-state condition at which ż = 0 and y = yd. The use

of integral action therefore guarantees zero error in steady-state between the measured

and desired values of the system outputs.
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The remaining task of the control design is to compute the matrix KI of integral

gains. For this purpose, the error vector e in the cost function (25) may be replaced by

the augmented error vector e∗, defined as,

e∗ =

[
e

z

]
. (31)

We may then proceed with a standard LQR control design to compute both the

state feedback gain matrix K as well as the integral gain matrix KI . As inputs to

the cost function for the LQR design, we define the weighting matrices to be Q =

diag(10−4 · I3×3, 1010 · I4×4) and R = ρ I3×3, where ρ = 1 but can be varied if necessary

to achieve the desired transient response. The diagonal elements of the matrix Q were

chosen to provide equal weighting in the cost function to a coil current error of 100A

and to an instantaneous error in the snowflake parameters of 5 cm.

3.4. Equilibrium reconstruction and SFD shape observer

We conclude our discussion of the control algorithm design by noting that several

additional components, while not the focus of this paper, are required by the control

system, namely, the rtEFIT algorithm for equilibrium reconstruction [39] and the SFD

shape observer for identifying the snowflake configuration during plasma operations.

The rtEFIT algorithm computes in real-time a realistic solution to the plasma force-

balance relation that is constrained by measurements of flux and field from a variety of

magnetic sensors on the device. In particular, rtEFIT provides a reasonably accurate

estimation of the plasma boundary location to enable precise control of the plasma cross-

sectional shape. The rtEFIT algorithm was used extensively on NSTX [40] and NSTX–U

[41] in conjunction with the ISOFLUX shape control algorithm for plasma boundary

and divertor configuration control. The SFD shape observer is designed to operate in

series with rtEFIT and is used for determining the locations of the two X-points that

comprise the snowflake configuration. The shape observer employs an algorithm similar

to that derived in Section 2.2 to approximate the field topology in the divertor region

given the field measurements (Br, Bz) at three points. The X-point locations of the

SFD can then be found by solving for the (r, z) coordinates at which Br = Bz = 0. The

observer algorithm was developed as a supplement to the iterative procedure used by

rtEFIT for locating a first-order null of the standard divertor configuration. Details of

the algorithm used by the SFD shape observer may be found in [25].

4. Feedback control simulation results

4.1. Simulation overview

In order to validate the performance of the proposed controller for the SFD configuration,

a control system simulator was developed for NSTX–U that evolves the linear dynamics

of the conductor currents simultaneously with the plasma force-balance as defined by
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the free-boundary Grad-Shafranov equation. For simulation of the conductor current

dynamics, we model all toroidally-axisymmetric conductors as inductively-coupled

lumped parameter circuits in a manner analogous to that which was used in Section

2.1 for modeling of the divertor control coils. The relevant equations for the combined

system of conductors are as follows,

Mcc İc + Mcv İv + Ψ̇cp + Rc Ic = Vc, (32a)

Mvc İc + Mvv İv + Ψ̇vp + Rv Iv = 0, (32b)

were (32a) describes the dynamics of the currents in the PF coils and (32b) describes

the dynamics of the currents in passive conducting structures such as the vacuum vessel

and passive stabilization plates. Figure 4 provides a cross-sectional view of the device

that depicts all axisymmetric conductors which were included in the simulations. The

mutual inductances between coils and passive conductors were computed analytically,

while the resistances of the passive conductors were determined by identifying values

that produced good agreement between predicted and measured magnetic diagnostic

signals for data obtained during vacuum-only test shots of the poloidal field coils. No

attempt was made to optimize the resistance calculations, although we note that the

development of methods for computing best-fit vessel resistances for NSTX–U is ongoing.

In addition to the linear models of the conductor current dynamics, a free-boundary

Grad-Shafranov equilibrium solver was developed to evolve the plasma boundary and

divertor configuration given the prescribed values of currents in all coils and passive

conductors. The plasma profiles p′(ψ) and F (ψ)F ′(ψ) were defined by cubic spline curves

with coefficients which were automatically updated during simulations to keep the scalar

parameters Ip, βp, and li approximately constant. All code and related infrastructure

for the simulations was implemented in the MATLAB/Simulink environment [42].

To be used as an initial condition for the simulation, a snowflake equilibrium was

designed by modifying the reconstructed equilibrium from a lower single null (LSN),

H-mode plasma discharge on NSTX–U (specifically, discharge 204118 at 509 ms) with

plasma parameters Ip = 1 MA, βp = 1.0, and li = 0.6. As inputs to the free-boundary

Grad-Shafranov solver used for the equilibrium design, the currents in the PF coils

used for control of the upper X-point position (PF1aU and PF2U), upper boundary

squareness (PF3U), and outer gap (PF5) were locked at their LSN equilibrium values.

It was determined through trial-and-error that the LSN plasma boundary was not

compatible with some desired SFD configurations, particularly near-exact snowflakes,

due to the relatively long divertor leg connecting the primary X-point to the outer

strike point. This issue was addressed by decreasing the current in the PF3L coil by

approximately 1.5 kA in order to increase the lower boundary squareness and reduce

the primary X-point height. The currents in the PF2L, PF1cL, and PF1aL coils were

then adjusted to generate the desired SFD configuration. The coil current values for all

active coils, as well as the plasma boundary shapes for the initial LSN equilibrium and

the designed SFD equilibrium, are shown in Figure 4.

During the SFD control simulations, all active PF coils were operated in closed-
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Figure 4. Cross-sectional view of NSTX–U depicting the toroidally-axisymmetric

conductors (e.g. poloidal field coils and vacuum vessel) that were modeled in the

control system simulator. Inside the vacuum vessel are plotted the separatrices from

the initial lower single null discharge used for equilibrium design and the resulting

snowflake divertor (SFD) equilibrium. Also shown are the coil currents for all active

coils in the SFD equilibrium and the ISOFLUX control points which were used for

control of the plasma boundary shape during simulations.

loop by one of two control algorithms: Voltage commands for the PF1aL, PF1cL, and

PF2L coils were computed by the SFD control algorithm as described in this paper.

The other active PF coils were operated under ISOFLUX control with the goal of

maintaining the plasma boundary shape and upper X-point position while the geometry

of the SFD configuration was modified by the lower divertor coils. The ISOFLUX

algorithm regulates the plasma boundary shape by minimizing the errors between the

fluxes at control points on the desired boundary and the flux at the X-point on the
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separatrix. The radial and vertical coordinates of the upper X-point are controlled

directly by the divertor coils. The ISOFLUX algorithm is primarily single-input-single-

output and uses a proportional-integral-derivative (PID) control law to compute voltage

commands for the coils. For the simulations discussed in this paper, the PID gains were

tuned empirically in simulations to provide reasonably good transient response and small

steady-state error.

To conclude our overview of the control system simulator, we provide a brief

description of the approximate sequence of events which occurs during each simulation:

A set of voltage commands for the PF coils is first computed using either the ISOFLUX

or SFD control algorithms. Given the values of the coil voltages, (32a) and (32b) are

integrated forward in-time to determine the instantaneous currents in all toroidally-

axisymmetric conductors. The magnetic flux on the grid is then updated by solving the

free-boundary Grad-Shafranov problem for the plasma equilibrium that is consistent

with the instantaneous conductor currents and the target values for Ip, βp, and li. A

set of plasma shape parameters, such as control points fluxes and snowflake X-point

positions, is then computed for input to the control algorithms during the next time-

step. We note that the system (32a) and (32b) generally has one unstable eigenvalue

corresponding to the well-known axisymmetric vertical instability [43]. For the purposes

of SFD control validation, we artifically stabilize the system by negating the unstable

eigenvalue. This choice is akin to assuming that the plasma vertical position is stabilized

by a separate control loop as is done on NSTX–U.

4.2. Simulation results

The shape control simulator was used to validate the performance of the proposed

SFD control algorithm with particular emphasis on the demonstration of controlled

operations in and transitions between a variety of divertor configurations. To this

end, we studied the controller performance in three distinct scenarios: (1) Transition

from low-field-side to high-field-side SFD-minus (as discussed in detail in Section 2) at

constant X-point separation, (2) scan of the X-point separation from a quasi-snowflake to

a near-perfect SFD in the SFD-plus configuration, and (3) scan of the X-point separation

from a quasi-snowflake to a near-perfect SFD in the SFD-minus configuration. We use

the term quasi-snowflake to refer qualitatively to any configuration in which there are

two distinct nulls that are separated by a reasonable distance. The three simulation

scenarios, when taken together, demonstrate that the control algorithm is capable of

achieving a large range of SFD configurations on NSTX–U.

Figure 5 illustrates the results of the simulations by displaying a series of equilibria

for each scenario. In each case, time is measured relative to the time for the equilibrium

in the top-left frame, which is taken to be t = 0. Also plotted in dashed lines for each

scenario are the desired X-point trajectories. In Figure 5a, we depict the results of

the scan of the snowflake angular orientation at constant X-point separation. At the

initial time, the divertor configuration is a SFD-minus with the secondary X-point in
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t = 414 ms

t = 0 ms

t = 624 ms

t = 211 ms a

t = 135 ms

t = 0 ms

t = 355 ms

t = 80 ms b

t = 750 ms

t = 600 ms

t = 825 ms

t = 675 ms c

Figure 5. Closed-loop simulation results depicting the primary and secondary X-

point trajectories during controlled scans of the SFD configuration on NSTX–U.

Three scenarios are depicted: (a) scan of the angular orientation at constant X-point

separation, (b) scan of the X-point separation at constant orientation in SFD-plus, and

(c) scan of the X-point separation at constant orientation in SFD-minus. The algorithm

enables controlled operations on NSTX–U in a wide range of divertor configurations.
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the SOL on the low-field-side. As time progresses, the control algorithm rotates the

configuration clockwise around the dashed circle. By t = 624 ms, the configuration has

converted to a SFD-minus with the secondary X-point in the SOL on the high-field-side.

Since the algorithm enables controlled transition between the two variants of the SFD-

minus configuration, the control system provides a mechanism for rectifying scenarios

in which the configuration may convert unpredictably from one configuration to the

other. In Figure 5b and 5c, we depict the results of controlled scans of the X-point

separation at constant angular orientation. In both figures, the dashed lines indicate

the desired orientation that the control system should attempt to acheive as the two

X-points approach each other. It is seen that control system is capable of converting

both SFD-plus and SFD-minus configurations to near-perfect snowflakes while adhering

quite closely to the desired orientations.

In Figures 6 and 7, we display time traces of the snowflake shape parameters as

well as the divertor coil currents and voltages for the scenario depicted in Figure 5a

(snowflake angle scan). In Figure 6, the top row illustrates the time histories of the three

parameters that were controlled directly in the simulation, namely, the radial coordinate

of the snowflake centroid and the radial and vertical displacements of the primary X-

point from the centroid. In all simulations for this paper, the vertical coordinate of

the centroid was uncontrolled and allowed to float to a natural position. It is worth

noting that in scenarios with three parameters controlled, the output matrix (8) is

fully-invertible as the number of controlled parameters does not exceed the number of

actuators., and we should therefore be able to achieve desired (rc, dR, dZ) with a well-

designed controller. This was the case for the simulations presented in this paper, as

can been seen for the angle scan in Figure 6. Investigation of underactuated scenarios

in which additional parameters are controlled will be the subject of future work. The

second row of Figure 6 also depicts the time histories of the snowflake radius and angle.

These parameters were indirectly controlled by the parameters (dR, dZ). Furthermore,

Figure 7 depicts the coil voltages and currents for the PF1aL, PF1cL, and PF2L coils

during the scan of the SFD orientation. We emphasis that both the currents and voltages

remain well-within their operational limits throughout the simulation. The currents and

voltages for the other two scenarios exhibit similar behavior and are therefore not shown.

5. Discussion and conclusion

In this paper, we have presented the design and validation of a feedback algorithm

for control of snowflake divertor configurations on NSTX–U. A higher fidelity model of

the snowflake configuration response to applied voltages on the divertor control coils

was derived that accounts for additional affects such as the primary X-point tracking

and the effects of plasma current redistribution. The model was then used to design a

model-based controller for the SFD configuration using a modern multivariable control

design technique known as the linear quadratic regulator. A control system simulator

was developed that evolves the currents in coils and passive structures simultaneously
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Figure 6. Time traces of snowflake parameters during a scan of the snowflake radius

in SFD-plus. The crimson curves are the achieved values for the SFD configuration,

while the dashed black lines in the upper row indicate the targets that were provided

to the control system.
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Figure 7. Poloidal field coil currents and voltages for the PF2L, PF1cL, and

PF1aL divertor coils during closed-loop simulation of a scan of the snowflake angular

orientation. Note that each coil has a different maximum current and available voltage.

However, the maximum current and voltage for each coil are at least 13 kA and 1 kV,

respectively.

with the free-boundary plasma equilibrium. The simulation was used to demonstrate

the performance of the proposed SFD controller in several scenarios.

Further control development will focus on augmenting the proposed controller with

additional parameters. For instance, the control scheme can be extended to include
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simultaneous control of the X-point and strike point positions. Such a control scheme

would be required to pursue additional advanced divertor configurations such as the

X-divertor. Additional parameters of relevance to divertor operation that could be

added to the control system include the poloidal flux expansion as well as the field line

angle-of-incidence.

The proposed control scheme has been implemented in the NSTX–U Plasma

Control System (PCS) and is ready for future plasma operations on NSTX–U using

the snowflake configuration. Future experiments will study the performance of the SFD

in terms of heat flux mitigation in NSTX–U.
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Appendix

In this appendix, we derive the rigid plasma response model that is used in Section 2

to develop a linearized model of the SFD configuration response. As stated in the main

text, under the rigid plasma assumption, the plasma current distribution is constrained

to move rigidly in the radial and vertical directions such that the relative distribution

of plasma current in the poloidal plane remains constant. The response of the plasma

is therefore completely defined by the responses of rC and zC , the radial and vertical

coordinates of the plasma current centroid. The response of the centroid position to

changes in the conductor currents can be decomposed as follows,

∂rC
∂I

=
∂Fr
∂I

(
∂Fr
∂rC

)−1
, (1.1a)

∂zC
∂I

=
∂Fz
∂I

(
∂Fz
∂zC

)−1
, (1.1b)

where I is a vector of (perturbed) conductor currents and Fr and Fz are the total radial

and vertical forces on the plasma, respectively. Under the rigid plasma assumption, the

radial and vertical forces can be expressed as follows,

Fr =

∫
(J×Bvac)r dV +

µ0I
2
p

2

(
ln

8R

a
√
κ

+ βp +
li
2
− 3

2

)
, (1.2a)

Fz =

∫
(J×Bvac)z dV, (1.2b)

where Bvac is the magnetic field generated by the conductors and the subscripts r and z

denote projections of the Lorentz force in the radial and vertical directions, respectively.

The second term in (1.2a) is an approximation for the outward radial force on the plasma
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and is a function of the plasma current Ip, major radius R, minor radius a, elongation

κ, poloidal beta βp, and normalized inductance li [44].

The derivatives which are required for computing the responses of rc and zc can be

computed directly from (1.2a) and (1.2b). For the responses of the forces with respect

to changes in the conductor currents, we obtain,

∂Fr
∂I

=

∫
Jφ
∂Mpc

∂r
dr dz, (1.3a)

∂Fz
∂I

=

∫
Jφ
∂Mpc

∂z
dr dz, (1.3b)

where Jφ is the toroidal component of the plasma current density and Mpc is the

vacuum mutual inductance between the plasma and the conductors. Furthermore, for

the responses of the forces with respect to changes in the centroid position, we find,

∂Fr
∂rC

= 2π

∫
r
∂Jφ
∂rC

Bzvac dr dz +
µ0I

2
p

2rC
, (1.4a)

∂Fz
∂zC

= −2π

∫
r
∂Jφ
∂zC

Brvac dr dz, (1.4b)

where Brvac and Bzvac are the radial and vertical components of the vacuum magnetic

field, respectively. The expressions in (1.4a) and (1.4b) can be further simplified through

use of the identities ∂rCJφ = −∂rJφ and ∂zCJφ = −∂zJφ.

The derivatives which are required for the model in Section 2 may now be computed

directly from (1.1a) through (1.4b). The response of the plasma current distribution to

changes in the conductor currents is computed as,

∂J

∂I
=
∂Jφ
∂rC

∂rC
∂I

+
∂Jφ
∂zC

∂zC
∂I

, (1.5)

while the response of the plasma flux the changes in the conductor currents is,

∂Ψcp

∂I
= Mcp

(
∂Jφ
∂rC

∂rC
∂I

+
∂Jφ
∂zC

∂zC
∂I

)
. (1.6)
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