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Small nonaxisymmetric perturbations of the magnetic field can greatly change the performance of

tokamaks through nonambipolar transport. A number of theories have been developed, but the predictions

were not consistent with experimental observations in tokamaks. This Letter provides a resolution, with a

generalized analytic treatment of the nonambipolar transport. It is shown that the discrepancy between

theory and experiment can be greatly reduced by two effects: (1) the small fraction of trapped particles for

which the bounce and precession rates resonate; (2) the nonaxisymmetric variation in the field strength

along the perturbed magnetic field lines rather than along the unperturbed magnetic field lines. The

expected sensitivity of the International Thermonuclear Experimental Reactor to nonaxisymmetries is also

discussed.
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Tokamaks, such as the International Thermonuclear
Experimental Reactor (ITER) [1], are sensitive to small
nonaxisymmetric magnetic perturbations [2–6]. In order to
improve the predictability and the controllability of plas-
mas in perturbed tokamaks, it is important to understand
the fundamental transport associated with nonaxisymmet-
ric perturbations.

In an axisymmetric tokamak, the turning points of a
collisionless trapped particle remain on a magnetic surface
as the turning points precess toroidally. The magnetic field
strength has a periodicity along each magnetic field line,
BðlÞ ¼ Bðlþ LÞ with l the distance along a field line and L
a constant, so the action J ¼ H

Mvkdl for a particle is a

constant on a magnetic surface. When the axisymmetry is
broken so BðlÞ � Bðlþ LÞ, the action for a particle be-
comes dependent on the toroidal location of its turning
point. The conservation of action then implies that the
turning point must drift across the magnetic surfaces.
The resulting transport depends on the species. Generally
ions diffuse faster and produce a net radial current until an
ambipolar electric field is established [7]. The radial cur-
rents of the nonambipolar diffusion [8] cause a toroidal
torque and viscosity, which is often called neoclassical
toroidal viscosity (NTV).

Nonambipolar transport has been studied for many years
[9–13], and its importance for tokamaks has been recently
appreciated [14–16]. Two main regimes were thought im-

portant in tokamaks, the 1=� regime [16] when the ~E� ~B
precession frequency !E is low relatively to the collision
frequency �, and the ��

ffiffiffi
�

p
regime [17] when !E is

relatively high. There is a large discrepancy in transport
between the two regimes, by several orders of magnitude
depending on parameters, but the smaller transport must be
chosen as can be readily verified by an approximate con-
nection [18]. The expected transport is then too small for
present tokamaks [19], as will be illustrated. The transport

may be enhanced by other effects, such as the resonances
among!E, the magnetic precession!B, and/or the bounce
frequency !b [8,13]. These effects are combined by a
generalized analytic treatment in this Letter, which pro-
vides a resolution.
The transport by trapped particles can be studied with

the bounce-averaged drift-kinetic equation for a perturbed
distribution function f1ð ~v; ~xÞ. The gyromotions are aver-
aged in the drift-kinetic equation [20], and so particle drift
velocity ~v is a function of (E,�) with the energy E and the
magnetic moment � ¼ Mv2

?=2B. Consider the drift-

kinetic equation

vkb̂ � ~rf1 þ v�
D

@f1
@�

þ vc
D

@f0
@c

¼ C½f1�; (1)

in the coordinates ~xðc ; #; � � q# � ’Þ. Here (c , #, ’)

are magnetic coordinates with the Jacobian J for ~B ¼
�0 ~rc � ~r�, where �0 ¼ @�=@c with the poloidal flux

�. The drift ~vD is decomposed as v�
D � ~vD � ~r� and vc

D �
~vD � ~rc . The bounce average is hAib � HðAdl=vkÞ=Hðdl=vkÞ ¼ ð!b=2�ÞH d#AJB=vk�0 between the turn-

ing points with the bounce frequency !b �
2�=

H
d#ðJB=vk�0Þ.

The bounce average is, however, well defined only when
the bouncing orbit is approximately closed. This is the case
when the precession is ignorable, l ¼ 0 as is assumed in
the conventional 1=� and ��

ffiffiffi
�

p
regimes, but also when the

particle precesses fast enough to span l > 0 times of a full
toroidal angle during one bounce. Since the orbit trajecto-
ries for each l are different, one can separate the perturbed
distribution function for the lth class of particles as

f1 ¼ f1lð ~v; c ; �Þe�i2�lhð ~v;#Þ; (2)

where hð ~v; #Þ ¼ ðR#
0 d�v�

DJB=vkÞ=ðH d�v�
DJB=vkÞ.

With the definition of the phase factor P l � ei2�lhð ~v;#Þ,
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the modified collisional operator Cl½f� � C½fP�l�P l, and
f1l / ein� in the presence of nonaxisymmetric field, one
can obtain

iðl!b � nhv�
DibÞf1l þ hCl½f1l�ib ¼ hvc

DP
lib @f0@c

: (3)

This is a generalized bounce-averaged drift-kinetic equa-
tion to be solved for the lth class of particles.

The generalized equation, Eq. (3), implies that a particle
in a resonance l!b � nhv�

Dib ¼ 0 effectively does not
precess and would drift out radially except for collisions.
The radial diffusion through this effective 1=� behavior is
very strong in high-temperature plasmas, and a small frac-
tion of particles that makes the resonance always exists in
Maxwellian plasmas. The dominance of these resonating
particles on the transport enables one to ignore nonreso-
nant particles l!b � nhv�

Dib � 0. Since the lth class of
particles has different orbits, their effective radial drifts

hvc
DP

lib and collisions hCl½f1l�ib are also different.
One needs to know the drift motions and collisions to

solve Eq. (3) for f1l. In the first order of gyroexpansion, the

drift velocity is ~vD ¼ vk=B ~r� ðvk ~B=!gÞ [21], where the
gyrofrequency is !g � eB=M and vk � �ð2ðU��B�
e�eÞ=MÞ1=2 with the total energy U, the electric potential
�e, the charge e and massM of a species. The nonaxisym-
metric part of the precession (�) and the radial drift (c ) is
[8]

vð�;c Þ
D ¼ ~v � ~rð�; c Þ ¼ vk

JB

@

@ðc ; �Þ
�
vkJB2

�0!g

�
; (4)

respectively. The bounce-averaged precession becomes

hv�
Dib ¼ �d�e

d�
þ

�
�

dB

ed�
� ð2E� 2�BÞ d lnðJBÞ

ed�

�
b
;

(5)

which includes the electric precession !E, and magnetic
precession !B. The bounce-averaged radial drift is propor-

tional to the spatial variation in the action as hvc
DP

lib ¼
ð1=e�0Þð!b=2�Þð@Jl=@�Þ. The action for the lth class of
particles is Jl ¼ H

d#JBMvkP l=�0 and its spatial varia-

tion becomes

@Jl
@�

¼ 2�

!b

��
2E� 3�B

B

�
@

@�
ðBP lÞ

�
b
: (6)

That is, the radial drift occurs due to the symme-
try breaking in the action, or equivalently in the effective
field strength BP l seen by the lth class of particles.

The perturbed distribution function f1l is not analyti-
cally tractable due to the complicated collisional operator.
Here the simple Krook operator, C½f1� ¼ ��Kf1 with the
effective collision frequency �K [18] is used to combine
the regimes. One can see the validity of this approach in the
final solution. Using the drifts and collisions, the solution
of Eq. (3) becomes

f1l ¼ ð1=eÞð!b=2�Þ
il!b � inð!E þ!BÞ � �K

�
@Jl
@�

�
@f0
@�

: (7)

The average flux across a magnetic surface is deter-

mined by the radial flow as �l ¼ hN ~ul � ~rc i [16], where
the flux average is hAi ¼ H

d#d’JA=
H
d#d’J . Using

Eqs. (1) and (2), and by changing variables from ~v to (E,
�) for f1lðE;�; c ; �Þ, one can obtain

�l ¼ 1

J 00M
2

Z
dE

Z
d�

I
d’

hCl½f1l�P�2libf1l
!b@f0=@�

; (8)

where J 00 ¼ 1=ð2�Þ2 H d#d’J . This is a general expres-

sion that one can use to obtain the flux when f1l is known.
Using Eq. (7),

�l ¼ 1

4�2e2M2J 00

Z
dE

Z
d�

�
I

d’
hjP�lj2ib�K!b

ðl!b � nð!E þ!BÞÞ2 þ ð�KÞ2

�
��������
@Jl
@�

��������
2@f0
@�

: (9)

As can be seen, the variation of the field strength through
the action and the gradient of the zeroth-order distribution
function drives the nonambipolar transport.
The general expressions for f1l and �l in Eqs. (7) and (9)

are more tractable if appropriate models and approxima-

tions are used. A model of the field can be given by B ¼
B0ð1� � cos#Þ þ B0

P
nm	nme

iðm�nqÞ#þin�, ignoring the
higher-order shaping terms. Only the first order in terms
of the inverse-aspect ratio � will be evaluated, so the
differences between magnetic coordinate systems can be
ignored. The zeroth-order distribution function can be

taken by Maxwellian distribution f0 ¼ fM ¼
N=ð ffiffiffiffi

�
p

vtÞ3e�v2=v2
t with vt ¼ ð2T=MÞ1=2.

For convenience, normalized variables x � E=T and

2 � ðE��B0ð1� �ÞÞ=2�B0� will be used instead of
(E, �). The electric precession is independent of (x, 
2),
but the bounce, the magnetic precession frequency and the
action integration over ’ become

!b ¼ �
ffiffiffi
�

p
2

ffiffiffi
2

p !t

ffiffiffi
x

p
Kð
Þ �

�
ffiffiffi
�

p
4

ffiffiffi
2

p !t

ffiffiffi
x

p
; (10)

!B ¼ �
q3!2

t

2�!g

x
F�1=2
010c ð
Þ
4Kð
Þ � �

q3!2
t

4�!g

x; (11)

Z
d’

��������
@Jl
@�

��������
2¼ �ðMvtqR0Þ2

2�
x
X
nmm0

n2	2
nmm0F

�1=2
nml F�1=2

nm0l

(12)

in the first order in �, using Eqs. (5) and (6). Here the tran-
sit frequency !t ¼ vt=qR0, the sign function � that � ¼
þ1 for corotation with plasma current, the complete el-

PRL 102, 065002 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

065002-2



liptic integral of the first kind K, and 	2
nmm0 �

Reð	nmÞReð	nm0 Þ þ Imð	nmÞImð	nm0 Þ. The function Fy
nml

is defined as

Fy
nmlð
Þ ¼

Z #t

�#t

d#ð
2 � sin2ð#=2ÞÞy cos½�nmlð#Þ�;
(13)

where �nmlð#Þ ¼ ðm� nqÞ# þ 2�lhð#Þ and #t ¼
2 arcsinð
Þ. The approximations Kð
Þ � 2 and F�1=2

010 �
ð1=2ÞF�1=2

000 ¼ 2Kð
Þ are used above. Also, one can ap-

proximate the phase factor hð#Þ ¼ ��Kð
; ð�=2Þ�
ð#=#tÞÞ=4Kð
Þ � ��#=2� by simply assuming the lin-
ear behavior of the incomplete elliptic integral of the first
kind, Kð
; #Þ, so �nmlð#Þ � ðm� nq� �lÞ# and
hjP�lj2ib � 1.

The effective collisional frequency �K is valid if it can
represent a more accurate collisional operator such as a
pitch-angle operator, that is, �Kf1l � hCp½f1lP�l�P lib. If
a single harmonic perturbation is applied, it has been
shown that [13] �K � ð�D=2�Þ½1þ ðm� nqÞ2 þ ðl=2Þ2�,
where the deflection collision frequency �D is �Da �
x�3=2�a � x�3=2

P
b�ab for a species a [20]. Here a further

approximation is taken m� nq � 0, so �K � ð�D=2�Þ�
½1þ ðl=2Þ2�. The transport is predominantly driven by
resonating particles in the 1=� regime where the perturba-
tions with m� nq � 0 give the dominant contribution.
This approximation is sufficiently accurate for the 1=�
regime as illustrated in Fig. 1. For plasmas in a pure �
regime, it becomes inaccurate in the presence of multi-

harmonic perturbations, and the estimation for ��
ffiffiffi
�

p
re-

gime [17] should be used. Complications of multiharmonic
perturbations may lead to stochastic transport [8,11],
which are ignored in our study.
One can use the described approximations and obtain

the nonambipolar flux, and also the surface-averaged to-

roidal force density by � ¼ ð1=eq�02Þh ~BT � ~r ��$i [14].
The toroidal force produces a rotational damping, so it
is convenient to use the flow instead of the radial deriva-
tives for the pressure and the electric potential. In the first
order gyroexpansion, 1=pðdp=d�Þ þ e=Tðd�e=d�Þ ¼
�e=Tðu’ � qu#Þ, and the poloidal rotation can be ap-
proximated as u# � ð1=eqÞdTa=d� [20]. The general for-
mula is then

h�̂ � ~r ��l
$ i ¼ �1=2pu’lffiffiffi

2
p

�3=2R0

Z 1

0
d
2	2

wl

Z 1

0
dxR1l; (14)

where

	2
wl ¼

X
nmm0

	2
nmm0

F�1=2
nml F�1=2

nm0l
4Kð
Þ ;

R1l ¼ 1

2

n2ð1þ ðl2Þ2Þ �a2� xe�x

ðl!b � nð!E þ!BÞÞ2 þ ðð1þ ðl2Þ2Þ �a

2� Þ2x�3
;

for a species. Note !b in Eq. (10) and !B in Eq. (11) are
also functions of x. The torque is proportional to the
toroidal flow u’ with the neoclassical offset by

u’l ¼ u’ þ cl�

��������
1

e

dTa

d�

��������; (15)

where the factor cl ¼ 1þ R1
0 dxR2l=

R1
0 dxR1l with

R2l ¼ ðx� 5=2ÞR1l. Since the variation is moderate,
one can approximate cl � 2 between cl ¼ 3:5 when � !
1 and cl ¼ 0:5 when !E ! 1. If the transport in ��

ffiffiffi
�

p
regime [17] is larger than that given by Eq. (14), so the
plasma is purely in ��

ffiffiffi
�

p
regime, one can take the maxi-

mum of these evaluations as � ¼ maxflj�l;���
ffiffiffi
�

p g. The
evaluations for each l and for ��

ffiffiffi
�

p
regime are done

independently and include all of the particles.
To understand a typical parametric dependency of

Eq. (14) on the collisionality, a set of parameters is chosen:
R0 ¼ 2 m, r ¼ 0:6 m, B0 ¼ 2 T, q ¼ 2:2, and the density
N ¼ 5� 1019 m�3. These parameters are relevant for
present tokamaks such as the National Spherical Torus
Experiment and DIII-D except the edge region, but also

for ITER by a scaling h�̂ � ~r ��$ li / 1=R0. The tempera-
ture is scanned over T ¼ 0:01 keV to 100 keV, and two
rotations are examined, !E=2� ¼ 1 kHz relevant for
Ohmic plasmas, !E=2� ¼ 10 kHz relevant for neutral-
beam-injection–heated plasmas. The diamagnetic and neo-
classical flow are ignored, so !E=2� ¼ f�. For perturba-

tions, multipoloidal harmonics 	nm ¼ 10�3e�ðm�5Þ2=50 are
applied with �10 � m � 20 and n ¼ 3. This spectrum
models the actual field from the coils on the outboard side.

(a) fφ = 10 KHz
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FIG. 1 (color). The typical rotational damping rate (=s) for
present tokamaks, which is proportional to diffusivity divided
temperature, as a function of ion-ion collision frequency for two
different rotations. Each evaluation uses �1=� (1=� regime),

���
ffiffiffi
�

p (���1=2 regime), �0 (resonance�0), l > 0 �l (resonance),

and � ¼ maxflj�l;���
ffiffiffi
�

p g (general).
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Figure 1 shows rotational damping rates �damp ¼ h�̂ �
~r ��l

$ i=2�f�R0MN as a function of ion-ion collision

frequency � ¼ �ii. The 1=� [16] and ��
ffiffiffi
�

p
[17] calcula-

tions are also shown for comparison. Note that l ¼ 0
follows almost exactly the 1=� result for high �, indicating
the accuracy of �K. Also, note that there is large discrep-
ancy up to 6 orders of magnitude at low � between the 1=�
and ��

ffiffiffi
�

p
evaluations. One can see from (a) that the

smaller of the two gives the damping rate �damp & 1=s.

However, experiments have shown that plasmas with the
given parameters (a) have �damp ¼ 10–100=s in a range of

�ii ¼ 103–104=s, as roughly marked by a box in Fig. 1(a).
Also, a 1=� behavior has been often observed in this range
of the collisionality [4,6], although a simple criteria !E 	
�=� implies that plasmas must be in ��

ffiffiffi
�

p
regime.

The inconsistency can be resolved by the generalized
evaluation of Eq. (14). Figure 1(a) shows that the succes-
sive l bounce-harmonic resonances strongly enhance the
transport for �ii ¼ 103–104=s and give �damp ¼ 10–100=s

with a broad 1=� behavior as all consistent with observa-
tions. Note that variations in the field strength must be as
large as 	
 10�3. This is a relevant value when evaluated

along the perturbed (displaced by ~�) magnetic field lines as

	 ¼ 	E þ ð ~� � ~rBÞ=B0 [22]. If it is evaluated along the
unperturbed field lines as in vacuum superposition [19],
typically 	E 
 10�4 in practice. The 	=	E gives another
enhancement by a factor of 
102, which is essential in
addition to bounce-harmonic resonances to reach the ex-
perimental values. The effects of other parameters are
weak compared with these two effects. One can also see
the case with a low rotation from Fig. 1(b), where only the
l ¼ 1 resonance occurs for �ii ¼ 103–104=s. When � be-
comes lower, the plasma enters the ��

ffiffiffi
�

p
regime for the

corotating case, but another resonance between the electric
and magnetic precession can occur for the counterrotating
case. This may degrade the benefit of the counterrotation
by the neoclassical flow [6] in ITER.

It is worthwhile to compare the nonambipolar diffusion

DNA with the neoclassical ambipolar diffusion DA �

��3=2q22
e�ei, where e is the electron gyroradius and

�ei is the electron-ion collisional frequency. The compari-
son with 	
 10�3 in Fig. 2 shows that DNA can be much
larger than DA, and can be comparable to the Bohm-like
diffusion in the low collisionality. Also note that the rota-
tion dependency of the nonambipolar transport differs by
the collisionality. One can find roughly DNA / 1=!E for
�ii > 103, but DNA / !E for �ii < 103, which implies that
the rotational stability in the presence of nonaxisymmetry
can greatly change along with the collisionality.
In summary, nonambipolar transport in perturbed toka-

maks is discussed with a generalized analytic treatment.
The strong enhancement of transport is predicted by the l
bounce-harmonic resonances and by the actual variations
in the field strength, and significantly improves the con-
sistency between theory and experiment. Nonambipolar
transport can be dominant in ITER-relevant regimes, in-
dicating that a strong control of particle and momentum
can be utilized, but must be carefully designed not to
degrade the energy confinement.
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FIG. 2 (color). Comparison between the nonambipolar (DNAÞ
and ambipolar (DAÞ diffusions as a function of ion-ion collision
frequency for two different rotations.
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