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Introduction and Motivation
DNsTX

Ion absorption critically important to assessing viability
of HHFW to heat and drive current in STs

Experimental evidence of HHFW interaction with NBI
— Neutral Particle Analyzer (NPA) scannable at midplane
— neutron rates, Fast Lost Ion probes

Thompson scattering measures T, n, profiles
— X-ray Crystal Spectroscopy measures peak T,

Computational evidence
— HPRT, TRANSP, CURRAY, AORSA, METS



NSTX Utilizes the TFTR ICRF system

D NSTH ——

* 30 MHz Frequency corresponds to w/Q, =9-13
e 6 MW from 6 Transmitters forup to 5 s

* 12 Element antenna with active phase control
allows wide variety of wave spectra

— ky=+3-14m!




HHEFW 12 element antenna array

NSTX ——

* Antenna takes up almost 90° toroidally
* Provides high power capability with good spectral selectivity




Phase Feedback Control Configuration
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 Digital based phase feedback control is used to set the phase between the voltages
of antenna elements 1 through 6

« Decouplers compensate for large mutual coupling between elements and facilitate
phase control



HHEFW can generate a fast 1on tail with NBI

« Typical shot
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e D" tail extends to 130 keV
e Tail saturates in time during HHFW
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« Tail decays on collisional time scale



HHFW enhances neutron rate

Measured RF vs. no RF
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« After RF turnoff, rate decays close to measured and

predicted no RF value

 TRANSP neutron rate predictions without RF input fall

shorter than measured rate for RF shot

0.25



Tail reduced with lower B-field, higher [3,

ONsTX
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« Larger [3, promotes greater off-axis electron absorption

« Reduces fraction of power available to core fast 1on population



Ton loss with lower B-field can’t account for

reduction 1n tail
ONsTX

* Two codes used to check 1on loss at B;=4.5 kG vs. 3.5 kG
for 80-120 keV 10ns

. CONBEAM - Egedal (MIT-PSFC)
— Loss fraction at 120 keV B, =4.5 kG: 21%

B, = 3.5 kG: 25%

 EIGOL — Darrow (PPPL)
— Loss fraction at 120 keV B, =4.5 kG: 17%

B, = 3.5 kG: 23%

« Small change in loss fraction insignificant compared to
major tail reduction
— More likely an RF effect



kll has little observed eftect on fast 1ons

DNsTX
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* Greater 10n absorption predicted with lower k, but surprisingly

little variation 1n tail, small neutron enhancement with higher k,



Ray tracing predicts fast 1on absorption
competitive with electrons

Shot 105908 Time 195 ms
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HPRT computes hot plasma
absorption over cold 1on/hot
electron ray path

25-50 rays used

TRANSP output used as
input for fast ion temp and
density distribution

Fast ions dominate central
absorption, electrons further
off-axis

T, =2T,(XCS),no
thermal 10n absorption

ONsTX



Effective Maxwellian a good approximation
for fast 10ns

ONSTX

Shot 108251 Time 235 ms r/a=3%

TRANSP fast ion dist. fcn.
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One effective Maxellian, exactly matching TRANSP energy
density and temp., fits f(E) well, though neutron rate off +20%

More Maxwellians (including negative) can match all moments



Observation of less fast 1on absorption at
higher [3, consistent with theory

ONsTX
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« Lower on-axis absorption for lower B, higher 3, predicted



HPRT Power Absorption
ONsTX

* Energy moment of Vlasov eq. + vector
1dentities leads to [Menard, RF 1999]:
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* Kinetic flux term 1s necessary 1f one uses
the full hot, complex dielectric tensor



Clarifying Kinetic Flux

ONsTX
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 Istimportant note — Stix, p. 75: “In expression for T,
the dot products are between E* and €,, and €, and E.”

o So, unambiguous Tis: T=--2 0 (E &, [F, )
1677 0k

* Does (4-15)=(4-17)? Yes! However...



Only LI'T 1s unique
ONsTX
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So expression for T is not unique; only L' T well-defined

Common loss-free plasma approximation of group

. P+T . . . . :
velocity: v, = —, 1S invalid, as 1s any expression
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which uses T 1n this form.
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RHS gets wrong cross derivatives wrt k



NPA scan indicates induced tail well off-axis

ONsTX
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* Depletion in particle flux with NPA R, further off-axis
« Tail extends to same energy range

« Future: scan over wider range of r/a



Summary

Clear RF-induced fast 1on tail observed with NBI

Neutron rate and modeling support interaction
— Good agreement between HPRT, AORSA, CURRAY

Tail formation suppressed with higher [3,
Little effect with k, observed
Effective Maxwellians can represent fast 1on f(E)

Kinetic flux clarified

DNSTX
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