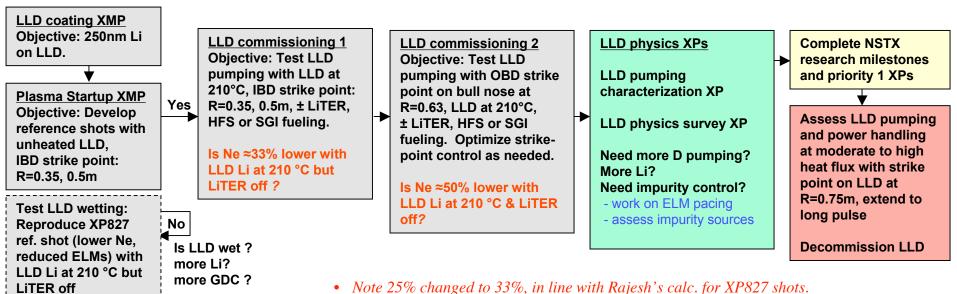
Agenda (draft):

- 1. Overview of Li road map for FY2010 run (Skinner)
- 2. LLD coating, characterization, and decommissioning LLD (Kugel)
- 3. Updated density reduction calcs including Li on C if available (Maingi)
- 4. High heat flux on LLD plans/program at end of run (all/any?)
- 5. R11-3 Milestone language

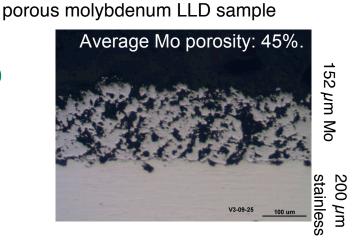

NSTX will assess and utilize the LLD in 4 stages PAC25-

Dry run version of Road Map:

1. Commission LLD for pumping

2. Characterize LLD pumping, plasma response to LLD

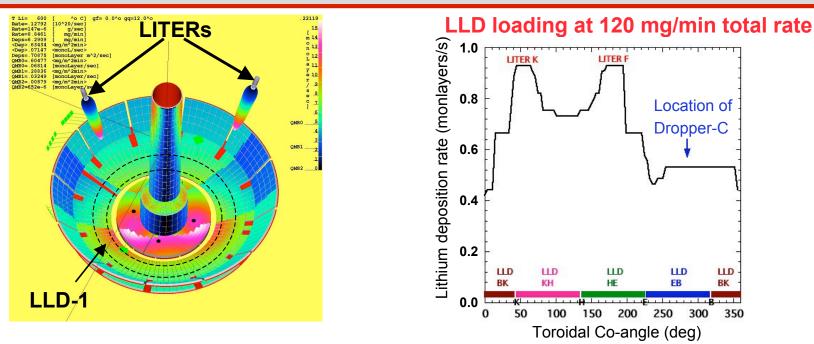
- 3. Utilize LLD pumping in milestone/high priority experiments
- 4. Assess high heat flux handling capability of LLD


- Note 25 % changed to 55 %, in the with Rajesh's cutc. for XI 627 shots
- There are no calculations for R=0.63 yet so leave at $\approx 50\%$.
- Difference is not so significant compared to uncertainties in recycling and exponent.

3-week bakeout 30 min He-GDC

NSTX will assess and utilize the LLD in 4 stages *PAC slide:*

- 1. Commission LLD for pumping
 - Begin with 3-week bakeout + HeGDC
 - 1 day LiTER for 250 nm Li coating of LLD
- 2. Characterize LLD pumping, plasma response to LLD
 - Strike point on inboard divertor
 - Test Li wetting of LLD
 - LiTER shuttered, LLD Li molten @ 210°C, SGI fueling
 - Compare to 2009 performance and pumping predictions.
- 3. Utilize LLD pumping in milestone/high priority experiments
 - Develop scenarios for all TSGs
- 4. Assess high heat flux handling capability of LLD
 - Move strike point onto bullnose, then LLD
 - Compare to 2009 and pumping predictions
 - Decommission LLD at end of run (evaporate remaining Li)

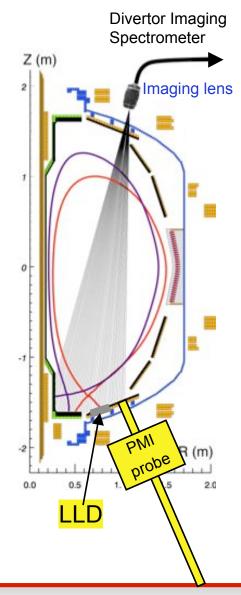


January 29, 2010

Cross sectional views of plasma sprayed

35

Plan to wet and fill LLD with lithium from dual LITERs,PAC slide:possibly supplemented by lithium Droppers



- Rely on liquid wetting the porous Mo surface to spread the lithium
- Wettable area in porous Mo estimated at ~8 times plate area
 - 1.1g lithium on LLD would coat wettable area to 250nm penetration depth of incident D⁺ ⇒ 15g evaporated ~ 1 day at normal evaporation rate.
 - 7% of lithium evaporated by LITERs reaches LLD-1 plates.
- Estimate ~40g lithium required to fill porous volume in Mo coating
- Lab tests of Li evap. + Li flow techniques to load LLD more efficiently

How to tell LLD is coated sufficiently with lithium ? *PAC backup slide:*

Assume 250 nm coating with Li will not make LLD glisten and Li coating on LLD will not be visibly obvious.

- Divertor Imaging Spectrometer will monitor Mo (384nm), Lil (670nm), Lill (485nm) emission from LLD. Also VIPS2 visible spectrometer.
- Fast cameras filtered with Mo (384nm), Lil (670nm) Lill (485nm) filters will view whole LLD.
- LLD sample will be exposed with PMI probe at LLD temperature and analysed at Purdue using:
 - <u>X-ray photo electron spectroscopy (XPS)</u>
 - Low Energy Ion Scattering Spectroscopy (LEISS)
 - Direct Recoil Spectroscopy (DRS).
 - PMI probe is further in the wings of LiTER distribution than LLD but is direct measurement of material surface.
- Purdue can perform lab experiments on Li coating of LLD samples in presence of carbon coatings.
- Unipolar arcing may be visible on fast cameras or on PMI probe samples.

R11-3 milestone language Stan / Charles version1:

- Research Milestone R(11-3): Assess the relationship between lithiated surface conditions and edge and core plasma conditions
- The plasma facing components (PFC) of fusion devices play a key role in determining the ٠ performance of the fusion plasma edge and core by providing particle pumping and fueling and acting as a source of plasma impurities. On NSTX, coating the divertor carbon PFCs with evaporated lithium has resulted in transient particle pumping, increased energy confinement, and suppression of edge localized modes (ELMs). To extend the duration of particle pumping, and to investigate the impact of liquid lithium on plasma performance, a liquid lithium divertor (LLD) will be installed in FY2010, and the relationship between lithiated surface conditions and edge and core plasma conditions will be determined. To understand pumping, D retention will be studied as a function of LLD temperature and divertor electron density and temperature, strike-point location, and flux expansion. The temperature evolution of the LLD surface will be measured to understand its heat transfer properties, to determine the allowable peak flux onto the LLD, and to relate the LLD surface temperature to the measured influx of lithium and hydrogenic species. A Lyman- α AXUV diode array will be utilized for deuterium recycling and retention measurements. An in-situ materials analysis particle probe situated near the LLD will provide measurements of retention and surface composition in the outer divertor region. The retention measurements will be compared to retention models. Finally, D, Li, and C sources from the divertor and Li transport from the plasma edge to the core will be measured. This research will provide the scientific understanding of LLD operation necessary to begin to comprehensively assess liquid lithium as a possible PFC solution for NSTX and next-step ST facilities.

R11-3 milestone language Michael version2:

- Research Milestone R(11-3): Assess the relationship between lithiated surface conditions and edge and core plasma conditions
- The plasma facing components (PFC) of fusion devices play a key role in determining the ٠ performance of the fusion plasma edge and core by providing either particle pumping or fueling and acting as a source of impurities. On NSTX, coating the divertor carbon PFCs with evaporated lithium has resulted in transient particle pumping, increased energy confinement, and suppression of edge localized modes (ELMs). To extend the duration of particle pumping, and to investigate the impact of liquid lithium on plasma performance, a liquid lithium divertor (LLD) has been installed in FY2010. The relationship between LLD conditions and the edge and core plasma will be determined. The temperature evolution of the LLD surface will be measured to determine its heat transfer properties and allowable peak flux, and to relate the LLD surface temperature to the measured influx of lithium and hydrogenic species. A Lyman- α AXUV diode array will be used to measure deuterium recycling and retention as a function of lithium coverage and temperature, and of the divertor electron density and temperature, strike-point location, and flux expansion. An in-situ materials analysis particle probe situated near the LLD will provide measurements of retention and surface composition in the outer divertor region for comparison with retention models. Finally, D, Li, and C sources from the divertor and Li transport from the plasma edge to the core will be measured. This research will provide the scientific understanding of LLD operation necessary to evaluate liquid lithium as a PFC solution for the NSTX upgrade and next-step ST facilities.

R11-3 milestone language Bob version3:

- Research Milestone R(11-3): Assess the relationship between the liquid lithium divertor and edge and core plasma conditions
- The plasma facing components (PFC) of fusion devices play a key role in determining the • performance of the fusion plasma edge and core by providing particle pumping and fueling and acting as a source of plasma impurities. On NSTX, coating the divertor carbon PFCs with evaporated lithium has resulted in transient particle pumping, increased energy confinement, and suppression of edge localized modes (ELMs). To extend the duration of particle pumping, and to investigate the impact of liquid lithium on plasma performance, a liquid lithium divertor (LLD) will be installed in FY2010, and the relationship between the liquid lithium divertor and edge and core plasma conditions will be determined. To understand pumping, D retention will be studied as a function of liquid lithium divertor conditions such as lithium coverage and temperature, and as a function of divertor electron density and temperature, strike-point location, and flux expansion. The temperature evolution of the LLD surface will be measured to understand its heat transfer properties, to determine the allowable peak flux onto the LLD, and to relate the LLD surface temperature to the measured influx of lithium and hydrogenic species. A Lyman- α AXUV diode array will be utilized for deuterium recycling and retention measurements. An in-situ materials analysis particle probe situated near the LLD will provide measurements of retention and surface composition in the outer divertor region. The retention measurements will be compared to retention models. Finally, D, Li, and C sources from the divertor and Li transport from the plasma edge to the core will be measured. This research will provide the scientific understanding of LLD operation necessary to begin to comprehensively assess liquid lithium as a possible PFC solution for NSTX and next-step ST facilities.

Jon guidance

- Until we have a LLD replenishment system that can operate without LITER, I think we need to deal with surface conditions in NSTX that result from a combination of LITER and LLD operation. Please write the milestonetaking this into account. Can you promise LITER-free LLD operation in FY11?(I wouldn't) and for all we know, we'll want to run LITER and LLD together to get the best plasma conditions!
- finally, I don't think MAPP can measure conditions at the LLD, it'll be farther out in major radius. hence all the vague-ish language it's there for a reason - to protect you ;)

Stan/Charles	Michael	Bob	Final
Research Milestone R(11-3):	Research Milestone R(11-3):	Research Milestone R(11-3):	
Assess the relationship between	Assess the relationship between	Assess the relationship between	
lithiated surface conditions and	lithiated surface conditions and	the liquid lithium divertor and	
edge and core plasma conditions	edge and core plasma conditions	edge and core plasma conditions	
The plasma facing components	The plasma facing components	The plasma facing components	
(PFC) of fusion devices play a key	(PFC) of fusion devices play a key	(PFC) of fusion devices play a key	
role in determining the	role in determining the	role in determining the	
performance of the fusion plasma	performance of the fusion plasma	performance of the fusion plasma	
edge and core by providing particle	edge and core by providing either	edge and core by providing particle	
pumping and fueling and acting as	particle pumping or fueling and	pumping and fueling and acting as	
a source of plasma impurities.	acting as a source of impurities.	a source of plasma impurities.	
On NSTX, coating the divertor	On NSTX, coating the divertor	On NSTX, coating the divertor	
carbon PFCs with evaporated	carbon PFCs with evaporated	carbon PFCs with evaporated	
lithium has resulted in transient	lithium has resulted in transient	lithium has resulted in transient	
particle pumping, increased energy	particle pumping, increased energy	particle pumping, increased energy	
confinement, and suppression of	confinement, and suppression of	confinement, and suppression of	
edge localized modes (ELMs).	edge localized modes (ELMs).	edge localized modes (ELMs).	
To extend the duration of particle	To extend the duration of particle	To extend the duration of particle	
pumping, and to investigate the	pumping, and to investigate the	pumping, and to investigate the	
impact of liquid lithium on plasma	impact of liquid lithium on plasma	impact of liquid lithium on plasma	
performance, a liquid lithium	performance, a liquid lithium	performance, a liquid lithium	
divertor (LLD) will be installed in	divertor (LLD) has been installed	divertor (LLD) will be installed in	
FY2010, and the relationship	in FY2010.	FY2010, and the relationship	
between lithiated surface		between the liquid lithium divertor	
conditions and edge and core		and edge and core plasma	
plasma conditions will be		conditions will be determined.	
determined.			
To understand pumping, D	The relationship between LLD	To understand pumping, D	
retention will be studied as a	conditions and the edge and core	retention will be studied as a	
function of LLD temperature and	plasma will be determined.	function of liquid lithium divertor	
divertor electron density and		conditions such as lithium	
temperature, strike-point location,		coverage and temperature, and as a	
and flux expansion.		function of divertor electron	
		density and temperature, strike-	
		point location, and flux expansion.	
The temperature evolution of the	The temperature evolution of the	The temperature evolution of the	

The temperature evolution of the	The temperature evolution of the	The temperature evolution of the	
LLD surface will be measured to	LLD surface will be measured to	LLD surface will be measured to	
understand its heat transfer	determine its heat transfer	understand its heat transfer	
properties, to determine the	properties and allowable peak flux,	properties, to determine the	
allowable peak flux onto the LLD,	and to relate the LLD surface	allowable peak flux onto the LLD,	
and to relate the LLD surface	temperature to the measured influx	and to relate the LLD surface	
temperature to the measured influx	of lithium and hydrogenic species	temperature to the measured influx	
of lithium and hydrogenic species.		of lithium and hydrogenic species.	
A Lyman-αAXUV diode array	A Lyman-αAXUV diode array	A Lyman-αAXUV diode array	
will be utilized for deuterium	will be used to measure deuterium	will be utilized for deuterium	
recycling and retention	recycling and retention as a	recycling and retention	
measurements.	function of lithium coverage and	measurements.	
	temperature, and of the divertor		
	electron density and temperature,		
	strike-point location, and flux		
	expansion.		
An in-situ materials analysis	An in-situ materials analysis	An in-situ materials analysis	
particle probe situated near the	particle probe situated near the	particle probe situated near the	
LLD will provide measurements of	LLD will provide measurements of	LLD will provide measurements of	
retention and surface composition	retention and surface composition	retention and surface composition	
in the outer divertor region.	in the outer divertor region for	in the outer divertor region.	
	comparison with retention models.		
The retention measurements will		The retention measurements will	
be compared to retention models.		be compared to retention models.	
Finally, D, Li, and C sources from	Finally, D, Li, and C sources from	Finally, D, Li, and C sources from	
the divertor and Li transport from	the divertor and Li transport from	the divertor and Li transport from	
the plasma edge to the core will be	the plasma edge to the core will be	the plasma edge to the core will be	
measured.	measured.	measured.	
This research will provide the	This research will provide the	This research will provide the	
scientific understanding of LLD	scientific understanding of LLD	scientific understanding of LLD	
operation necessary to begin to	operation necessary to evaluate	operation necessary to begin to	
comprehensively assess liquid	liquid lithium as a PFC solution for	comprehensively assess liquid	
lithium as a possible PFC solution	the NSTX upgrade and next-step	lithium as a possible PFC solution	
for NSTX and next-step ST	ST facilities.	for NSTX and next-step ST	
facilities.	ST fuenties.	facilities.	
		includes.	

