Physics Meeting

PPPL, U.S., 12.01.2015

Distinct Ohmic Breakdown Physics in a Tokamak

<u>Min-Gu Yoo¹</u>, Jeongwon Lee¹, Young-Gi Kim¹, Francesco Maviglia²,

Adrianus C. C. Sips^{3,4}, Jayhyun Kim⁵, and Yong-Su Na^{1*}

*Corresponding author's E-mail: ysna@snu.ac.kr

- 1) Department of Nuclear Engineering, Seoul National University, Seoul, Korea
- 2) EURATOM-ENEA-CREATE, University of Naples Federico II, Napoli 80125, Italy
- 3) JET-EFDA, Culham Science Centre, Abingdon OX 14 3DB, U.K.
- 4) European Commission, Brussels 1049, Belgium
- 5) National Fusion Research Institute, Daejeon, Korea

Contents

Background

- what's a breakdown?

Introduction

- unique characteristics of the ohmic breakdown in a tokamak

Motivation

- why is a new approach needed?

Modeling

- considering plasma response

• Simulation Results

• Summary

Background

What is a breakdown?

Electrical breakdown

→ Rapid reduction in the resistance of an electrical insulator

Electron Avalanche

• Electron drift motion

$$v_{d,e} = -\mu_e E$$

Townsend avalanche theory

$$\frac{dn(x)}{dx} = \alpha n(x) \implies n(x) = n_0 \exp(\alpha x)$$

where $\alpha = Ap \exp\left(-\frac{Bp}{E}\right)$

- Characteristics of Townsend avalanche
 - External electric fields is dominant.
 - Transport is parallel to the electric field.

[1]

Electric Discharges

Glow discharge

Streamer

Arc discharge

Lightning

Electric discharges are one of most interesting physical phenomena for a long time!!

Introduction

Ohmic Breakdown in the Tokamak

- Toroidal electric fields is induced by time-varying current of central solenoids (CS) to make electron avalanches in the tokamak.
- $|E_{tor}| \sim 1 \text{ V/m}$ for usual tokamaks, $|E_{tor}| < 0.3 \text{ V/m}$ for ITER due to engineering limits

Stray magnetic fields

• Stray magnetic fields are produced by CS currents and eddy currents on the wall

- Since guiding centers of electrons tend to follow the magnetic field lines, electrons could be lost easily following stray magnetic fields.
- PF coil currents are adjusted to appropriately cancel the stray magnetic fields.

Magnetic Configurations during ohmic breakdown

• **Time-varying , inhomogeneous** and **nonlinear** electromagnetic configurations are **inherently produced** in the tokamak which is totally different from any other discharge device.

Motivation

Distinct Characteristics of the Ohmic Breakdown

- 1. Low E (~ 1 V/m) by Faraday's induction
- 2. Long length (L = 1000 ~ 10000 m)
- 3. Strong magnetic fields (~1 T)
- 4. Time-varying, inhomogeneous and nonlinear electromagnetic fields
- 5. Toroidal periodic & symmetric geometry

What's a picture of the ohmic breakdown physics under this unique situation?

Lack of observations !

- Initial plasma during the avalanche phase is cold (10~100 eV) and rarefied (10⁸ ~10¹⁵ m⁻³)
- Most diagnostics in the tokamak focus on hot dense plasma

➔ Physics of the ohmic breakdown is not clearly revealed yet

JET Experimental Results (Fast Camera, KL8A)

Black Box

- What's going on here?

Why? How?

- Why inside?
- How is a channel like structure produced and maintained?

Townsend avalanche & Paschen's law

- First Townsend ionization coefficient α
 - : Ionization growth rate

$$\alpha = Ap \exp(-Bp / E)$$
$$\frac{dn(x)}{dt} = \alpha n(x) \implies n(x) = n_0 \exp(\int \alpha \, dx)$$

- Necessary condition for self-sustaining of avalanche
 - $N_{e,sec} = \gamma \left(e^{\alpha d} 1 \right) \geq 1$
- Paschen's law

$$V = Ed \ge \frac{B(pd)}{\ln[A(pd)]}$$

⇒ Breakdown is occurred by several generation of avalanches. It can be determined by global parameter p, d and V, because slab geometry is homogeneous system.

- [2] Erik Wagenaars, "Plasma Breakdown of Low-Pressure Gas Discharges", Technische Universiteit Eindhoven, 2006 Proefschrift
- [3] Yu.B. Golubovskii, et al, J. Phys. D: Appl. Phys., 35(8):751–761, 2002.
- [4] M.A. Folkardt and S.C. Haydon. : I. J. Phys. B: At. Molec. Phys., 6(1):214–226, 1973.

Previous Study: Field Quality Approaches

Conventional field quality analysis

- Effective connection length [5] $L_{\rm eff} \cong 0.25 \ a_{\rm eff} B_T / B_p$
- Empirical condition [6]

Breakdown occurs at unexpected region

Field-line-following analysis

• Estimation of 2D field map quality by field-line integration

• Cons

- Static analysis at a specific time
- Considering only external fields
 (neglect fields produced by a plasma)
 - No dynamic plasma evolution & response
- [5] R. Yoshino, et al., Plasma Phys. Control. Fusion 39 205 (1997)
- [6] Tanga, A., in Tokamak Start-up (ed. U. Knoepfel), Plenum Press, New York 159 (1986)
- [7] Lazarus E.A., et al., Nucl. Fusion **38** 1083 (1998)

Simple slab devcie v.s. Tokamak

	Slab	Tokamak		
E	> kV/m	~ V/m		
Pressure	~ 100 Pa	~ mPa		
В	0	~ 1 T		
Track Length	< 1 m	> 1000 m		
Fields characteristic	Homogeneous	Inhomogeneous		
	Steady	Time-varying		
Plasma response	negligible	??		
	Same nhysics ??			

Dynamic evolution should be considered to understand the ohmic breakdown in the tokamak

Electron density evolution of Mode D Scenario in JET

- Assume that the initial density of electron is 1 at everywhere
- Electron density evolve very dynamically with time-varying flux map (B-field and E-field).
- Multiplication of electron during 10 ms is **too large** (>10¹⁷). (it's unreal value)

Electrons are fast lons are almost in rest

Breakdown occurs with only **one-pass electrons**, not by many generations.

Mysterious results of Townsend avalanche theory for the tokamak

Space charge

• Too fast & large avalanche growth

Townsend : Plasma is locally fully ionized in a only few ms

Experiment : Plasma still grows over than 10 ms in experiments

• Transport

Townsend : Electrons are swept away by external electric fields.

Space charge, fast electrons

Experiment : Broad structure of a channel is produced and maintained

Plasma Response: Effect of Space Charge

 $|E_{pla,\parallel}| \ll |E_{ext,\parallel}|$

Low charge density

 \Rightarrow Electron and Ion move opposite direction.

High charge density

- $\begin{aligned} |E_{pla,\parallel}| \sim |E_{ext,\parallel}| & \Rightarrow \text{ Parallel heating reduced, Ambipolar like behavior} \\ |E_{pla,\perp}| \gg |E_{ext,\perp}| & \Rightarrow \vec{E} \times \vec{B} \text{ drift motions} \end{aligned}$

Electric field configuration can be modified by plasma response.

Effect of Space Charge: Plasma transport

Perpendicular transport could be dominant during the ohmic breakdown !!

Townsend avalanche theory is not valid for this situation.

Quasi-neutrality of initial plasma $\left(\frac{\partial \sigma}{\partial t} = ??\right)$

$$\mathbf{j}_{\parallel} = \mathbf{e}(\mathbf{n}_{\mathbf{i}}\boldsymbol{v}_{d,\parallel}^{i} - \boldsymbol{n}_{e}\boldsymbol{v}_{d,\parallel}^{e})$$

$$\boldsymbol{j}_{\perp} = \frac{(n_i M + n_e m)}{B^2} \frac{dE_{\perp}}{dt}$$

17/27

$$\nabla \times \boldsymbol{B} = \mu_0 \left(\boldsymbol{j}_{\parallel} + \boldsymbol{j}_{\perp} + \boldsymbol{\epsilon}_0 \frac{d\boldsymbol{E}}{dt} \right) \quad \Rightarrow \quad \nabla \cdot \left(\boldsymbol{j}_{\parallel} + \boldsymbol{j}_{\perp} + \boldsymbol{j}_d \right) = 0$$

$$\text{If } n_i \ll \frac{\epsilon_0 B^2}{M} \text{ , } (j_\perp \ll j_d) \quad \Rightarrow \quad \nabla \cdot (j_\parallel + j_d) = 0 \quad \Rightarrow \quad \frac{\partial \sigma}{\partial t} = -\nabla \cdot j_\parallel \neq 0$$

$$\text{Non quasi-neutral}$$

If
$$n_i \gg \frac{\epsilon_0 B^2}{M}$$
, $(j_\perp \gg j_d) \rightarrow \nabla \cdot (j_\parallel + j_\perp) = 0 \rightarrow \frac{\partial \sigma}{\partial t} = -\nabla \cdot j = 0$
(10¹⁵ ~ 10¹⁶ m⁻³) Quasi-neutral

My picture of the ohmic breakdown in the tokamak

Particle Simulation Development

BREAK (Breakdown Evolution Analysis in tokamaK)

- 6 species (e, H₂⁺, H⁺, H₃⁺, H_{2(fast)}, H_(fast)) are considered.
- Guiding centers of the charged particle motions are calculated from direct implicit method with D1 damping scheme to reduce the computational cost.
- 26 collision reactions in the energy range of (0.01 1000) eV are treated by the MCC (Monte Carlo Collision) scheme to include atomic physics.
- As a plasma response, electric field generation due to the space charge is calculated from Poisson equation where the first-wall is considered as a grounded conductor.

Simulation results

Application to KSTAR Breakdown Scenario

Reference breakdown scenarios of 2010

- Breakdown scenarios are designed by considering eddy currents as a ring model and ferromagnetic incoloy 908 material effect as a non-linear model [8].
- Magnetic field configurations are changed rapidly during the breakdown phase.
 (30 - 60 ms)

Initial Condition for Particle Simulation	<i>e</i> ⁻	H_2^+	Gas	1 KSTA magn
Density (# $/m^3$)	2×10^{8}	2×10^{8}	4×10^{17}	2 2 D o
Temperature (eV)	0.03	0.03	0.03	p = 2 mPa
Num. Super Particle (#)	2×10^{6}	2×10 ⁶		

KSTAR 2010 scenario magnetic field configuration

Breakdown Simulation of KSTAR 2010 Scenario

21/27

Phase 0. Heating of Background Electrons

- ✓ Background electrons get energy from $E_{vac, \parallel}$ very rapidly.
- ✓ Electron temperature becomes saturated due to balance of the energy gain from the electric field and the energy loss by collisions at the end of the phase 0.

Phase 1. Townsend Avalanche

- ✓ External $E_{vac,\parallel}$ fields are dominant.
- ✓ Electrons move along the magnetic field lines (lons are almost in rest).
- ✓ Electron avalanche occurs with constant exponential density growth rate according

to Townsend avalanche theory
$$\left(\frac{dn(\vec{x})}{d\vec{l}} = \alpha n(\vec{x}); \alpha = Apexp(-Bp/E)\right)$$
. 23/27

Phase 2. Space Charge Effect

- ✓ **Plasma potential is built up** by positive **space charge** accumulated inside of the vessel.
- ✓ Electron energy is decreased due to reduction of $|E_{\parallel}|$ so that the electron density growth rate is also reduced.
- ✓ **Perp. transport** of the plasma is enhanced by the $\vec{E} \times \vec{B}$ drift motion.

Discussion

Role of space charge effect

$\checkmark |E_{\parallel}|$ modification

- Electron temperature is decreased due to **reduction of** $|E_{\parallel}|$ so that the electron density growth rate is also reduced

$\checkmark \vec{E}_{\perp} \times \vec{B}$ drift motion

- New perpendicular transport is enhanced
 - e^- : (\perp transport) ~ (\parallel transport)
 - H_2^+ : (\perp transport) >> (|| transport)
- Plasma-wall interactions with H⁺₂ such as secondary electrons come into play during breakdown phase

Summary

- We establish a toroidal symmetric plasma model and develop a particle simulation code to have a proper understanding of the ohmic breakdown physics in the tokamak.
- In the modelling and the simulations, crucial roles of the self-produced electric fields by the space charge of the plasma are newly observed.
- In the parallel direction, the avalanche growth rate is reduced by *E*_{tot,||} reduction due to the space charge effect.
- In the perpendicular direction, E×B drift due to the self-produced perpendicular electric field results in **new perpendicular transport** especially for cold ions which can totally change the picture of the breakdown.
- These space-charge effects newly observed in this research could be important clues for a deeper understanding of unresolved issues of the ohmic breakdown in the tokamak.

Thank you !!

Simulation results for #82404 shot of JET device

Simulation results for #82404 shot of JET device

Orderings

R = 1.8 m, B = 1 T, Te = Ti = 20 eV, Tn = 400 K, Hydrogen Gas Pressure = 5 mPa

	Electron	Proton
Thermal velocity (v_t)	$2.7 \times 10^6 m/s$	$6.2 \times 10^4 m/s$
Drift velocity ($v_{\nabla B+curv}$)	15 m/s	15 m/s
Gyro-frequency (Ω)	$1.8 \times 10^{11} Hz$	$9.6 \times 10^7 Hz$
Gyro-radius ($ ho$)	$1.2 \times 10^{-5} m$	$5.2 \times 10^{-4} m$

Electron's scattering	Elastic	Ionization
Frequency (v)	$1.7 \times 10^5 Hz$	$2.7 \times 10^4 Hz$
Mean free path (λ)	16 m	100 m

i) $\Omega_e \gg \Omega_i \gg v$ ii) $\rho/L \ll 1$ iii) During 1 ms, $|\Delta x|_{max,col} = \rho v/1000 \ll L$, $|\Delta x|_{max,drift} \ll L$

⇒ Particle is almost attached to magnetic field, particle motion could be treated sufficiently as a guiding center motion

Electron evolution model

Empirical electron drift velocity by electric field : (Typically E/p = 80-800, $V_d \sim 0.55 - 2*10^6$ m/s)

$$v_d \cong 6.9 * 10^4 \sqrt{(E/p)}$$
 [m/s] (for 70

During dt, electrons follow the path \vec{dl} parallel to magnetic field line with drift velocity v_d

$$\overrightarrow{dl} = \overrightarrow{v_d}(x,t) * dt$$

During some $\triangle t$, 2D-axisymmetric electron cloud(toroidal ring) move to location 2 from location 1. And electron density is multiplied by Townsend theory. (Neglect diffusion by coll.)

Volume compression term

Electron density evolution of Mode D Scenario in JET

- Assume that the initial density of electron is 1 at everywhere
- Electron density evolve very dynamically with time-varying flux map (B-field and E-field).
- Multiplication of electron during 10 ms is **too large** (>10¹⁷). (it's unreal value)

Electrons are fast lons are almost in rest

Breakdown occurs with only a single avalanche, not by many generations.

Floating Potential Measurement on CASTOR tokamak [11]

The experiment was carried out on the CASTOR tokamak, which has a major radius R0 = 0.4 m, minor radius a = 85 mm

The maximum possible value of \vec{E}_{\perp} is given by the condition that the projection of the electric field along the lines of force vanish ($v_D = 0$):

$$\vec{\mathbf{E}}_{\perp} = -\mathbf{E} \, \frac{\mathbf{B}_{\mathrm{T}}}{|\mathbf{B}_{\perp}|^2} \cdot \vec{\mathbf{B}}_{\perp}$$

FIG. 1. Temporal evolution of loop voltage U_L , plasma current I_p and floating potential U_{FL} of the probes for external magnetic fields: $B_H = 0.63 \text{ mT}$, $B_V = -1.8 \text{ mT}$. Numbers 1, 2, 3 and 4 denote the probe positions: $(R, z) = (R_0, a)$, $(R, z) = (R_0, \neg a)$, $(R, z) = (R_0 + a, 0)$ and $(R, z) = (R_0 \neg a, 0)$, respectively. (In the text, these are referred to as upper, lower, outer and inner probes.)

Measurement of 2010 reference scenario (#3563)

#3563 @ 40 ms

#3563 H-alpha signals

- Breakdown occurs widely from 40 ms
- Most intense breakdown region matches with the field-line-following analysis

Field Quality of KSTAR 2010 scenario

Equation of Motion for Charged Particles [1]

• Equation of motion for charged particle

$$m\frac{d\boldsymbol{v}}{dt} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

• To the first order in m/q, the instantaneous acceleration $\frac{dv}{dt}$ of the guiding center position **r** [2]

$$m\frac{d\boldsymbol{v}}{dt} = q[\boldsymbol{E}(\boldsymbol{r}) + \boldsymbol{v} \times \boldsymbol{B}(\boldsymbol{r})] - \mu \nabla B(\boldsymbol{r})$$

This equation gives a solution whose **instantaneous value is not physically relevant**, **only the low frequency part** of the solution **has a physical meaning** (the **guiding center drifts**)

[1] F. Mottez, J.COMP.PHYSICS 227 (2008) 3260-2381
[2] T. Northrop, The Adiabatic Motion of Charged Particles, Interscience Publishers, 1963

Implicit method under Cylindrical Coordinate

• Discretized equation of motion for charged particle

$$\boldsymbol{v}_{n+1/2} = \boldsymbol{v}_{n-1/2} + \Delta t \left[\overline{\boldsymbol{a}}_n - \frac{\mu}{m} \boldsymbol{\nabla} B_n(\boldsymbol{x}_n) + \frac{q}{m} \boldsymbol{u}_n \times \boldsymbol{B}_n(\boldsymbol{x}_n) + \boldsymbol{a}_n^{fictious} \right]$$

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n + \mathbf{h}^{-1} \Delta t \ \boldsymbol{v}_{n+1/2}$$
metrics
Centrifugal + Coriolis
Implicit parameters (D1)

$$\overline{\boldsymbol{a}}_{n} = \frac{1}{2} \left(\frac{q}{m} \boldsymbol{E}_{n+1} + \overline{\boldsymbol{a}}_{n-1} \right)$$
$$\boldsymbol{u}_{n} = \frac{1}{2} \left(\boldsymbol{v}_{n+1/2} + \overline{\boldsymbol{v}}_{n-1/2} \right)$$
$$\overline{\boldsymbol{v}}_{n-1/2} = \frac{1}{2} \left(\boldsymbol{v}_{n+1/2} + \overline{\boldsymbol{v}}_{n-3/2} \right)$$

• Substituting implicit parameters with D1 scheme

$$\boldsymbol{v}_{n+1/2} = \boldsymbol{v}_{n-1/2} + \frac{\Delta t}{2} \overline{\boldsymbol{a}}_{n-1} - \frac{\mu \Delta t}{m} \nabla B_n + \frac{q \Delta t}{4m} \overline{\boldsymbol{v}}_{n-3/2} \times \boldsymbol{B}_n(\boldsymbol{x}_n) + \Delta t \boldsymbol{a}_n^{fictious} + \frac{\Delta t}{2} \frac{q}{m} \boldsymbol{E}_{n+1} - \boldsymbol{v}_{n+1/2} \times \boldsymbol{\Theta}_n(\boldsymbol{x}_n)$$
$$\boldsymbol{t}_{level} \leq \boldsymbol{n} \qquad \boldsymbol{t}_{level} = (\boldsymbol{n} + \boldsymbol{1})$$

where $\boldsymbol{\Theta}_n(\boldsymbol{x}_n) = \frac{3q\Delta t}{4m} \boldsymbol{B}_n(\boldsymbol{x}_n)$

Prediction & Correction terms (Case 1)

Let $v_{n+1/2} = \widetilde{v}_{n+1/2} + \delta v_{n+1/2}$ ٠

$$\widetilde{\boldsymbol{v}}_{n+1/2} + \delta \boldsymbol{v}_{n+1/2} = \boldsymbol{v}_{n-1/2} + \frac{\Delta t}{2} \overline{\boldsymbol{a}}_{n-1} - \frac{\mu \Delta t}{m} \nabla B_n + \frac{q \Delta t}{4m} \overline{\boldsymbol{v}}_{n-3/2} \times \boldsymbol{B}_n(\boldsymbol{x}_n) + \Delta t \boldsymbol{a}_n^{fictious} - \widetilde{\boldsymbol{v}}_{n+1/2} \times \boldsymbol{\Theta}_n(\boldsymbol{x}_n) + \frac{\Delta t}{2} \frac{q}{m} \boldsymbol{E}_{n+1} - \delta \boldsymbol{v}_{n+1/2} \times \boldsymbol{\Theta}_n(\boldsymbol{x}_n)$$
For correction ($\equiv \delta \boldsymbol{w}$)

For prediction $l = \widetilde{w}$

- The equation of motion is divided into two parts

$$\widetilde{\boldsymbol{\nu}}_{n+1/2} = \widetilde{\boldsymbol{\nu}} - \widetilde{\boldsymbol{\nu}}_{n+1/2} \times \boldsymbol{\Theta}_n(\boldsymbol{x}_n)$$
$$\delta \boldsymbol{\nu}_{n+1/2} = \delta \boldsymbol{w} - \delta \boldsymbol{\nu}_{n+1/2} \times \boldsymbol{\Theta}_n(\boldsymbol{x}_n)$$

Predicted velocity Correct

$$\widetilde{\boldsymbol{v}}_{n+1/2} = \frac{1}{1+\boldsymbol{\Theta}^2} (\mathbb{I} - \boldsymbol{\Theta} \times \mathbb{I} + \boldsymbol{\Theta} \boldsymbol{\Theta}) \cdot \boldsymbol{w}_n$$
$$\delta \boldsymbol{v}_{n+1/2} = \frac{1}{1+\boldsymbol{\Theta}^2} (\mathbb{I} - \boldsymbol{\Theta} \times \mathbb{I} + \boldsymbol{\Theta} \boldsymbol{\Theta}) \cdot \delta \boldsymbol{w}$$

tion velocity
$$\delta v_{n+1/2}$$

$$\frac{1+1/2}{1+\Theta^2} = \frac{1}{1+\Theta^2} (\mathbb{I} - \Theta \times \mathbb{I} + \Theta \Theta) \cdot \delta w$$

Note that
$$E_{n+1} = E_{n+1}(x_{n+1})$$

Pre-Push **Final-Push**

 $\widetilde{\boldsymbol{x}}_{n+1} = \boldsymbol{x}_n + \boldsymbol{h}^{-1} \Delta t \ \widetilde{\boldsymbol{v}}_{n+1/2}$ $x_{n+1} = x_n + h^{-1} \Delta t \ v_{n+1/2}$ $\boldsymbol{x}_{n+1} = \widetilde{\boldsymbol{x}}_{n+1} + \boldsymbol{h}^{-1} \Delta t \, \delta \boldsymbol{v}_{n+1/2}$

• How to guess $E_{n+1}(x_{n+1})$?

Gauss's lawContinuity equationCorrection velocity
$$\nabla \cdot E_{n+1} = \frac{\rho}{\epsilon_0} = \frac{1}{\epsilon_0} (\tilde{\rho} + \delta \rho)$$
 $\delta n_s = -\nabla \cdot (\tilde{n}_s \delta \boldsymbol{x}_s) = -\nabla \cdot (\tilde{n}_s \delta \boldsymbol{v}_s \Delta t)$ $\delta \boldsymbol{v}_{s,n+1/2} = \frac{1}{1 + \Theta_s^2} (\mathbb{I} - \Theta_s \times \mathbb{I} + \Theta_s \Theta_s) \cdot \frac{\Delta t}{2} \frac{q_s}{m} E_{n+1}$

$$\boldsymbol{\nabla} \cdot \boldsymbol{E}_{n+1} = \frac{1}{\epsilon_0} \sum_{s} (q_s \tilde{n}_s + q_s \delta n_s) = \frac{\tilde{\rho}}{\epsilon_0} - \boldsymbol{\nabla} \cdot \left[\sum_{s} \frac{1}{2} \frac{\tilde{n}_s q_s^2}{\epsilon_0 m_s} \frac{\Delta t^2}{1 + \Theta_s^2} (\mathbb{I} - \boldsymbol{\Theta} \times \mathbb{I} + \boldsymbol{\Theta} \boldsymbol{\Theta}) \cdot \boldsymbol{E}_{n+1} \right]$$

• Implicit field equation

$$\nabla(\mathbb{I} + \overleftarrow{\chi}) \cdot \boldsymbol{E}_{n+1} = \frac{\widetilde{\rho}}{\epsilon_0} \quad \text{where } \overleftarrow{\chi} \equiv \sum_s \frac{1}{2} \frac{\widetilde{n}_s q_s^2}{\epsilon_0 m_s} \frac{\Delta t^2}{1 + \Theta_s^2} (\mathbb{I} - \Theta \times \mathbb{I} + \Theta \Theta)$$

$$\nabla(\mathbb{I} + \overleftrightarrow{\chi}) \cdot \nabla \Phi_{n+1} = -\frac{\widetilde{
ho}}{\epsilon_0}$$
 assuming $E = -\nabla \Phi$