The Advanced Tokamak Path to a Compact Demonstration Fusion Pilot Plant

RJ Buttery, JT McClenaghan, JM Park, D Weisberg, J Canik, J Ferron, A Garofalo, C Holcomb, PB Snyder and H Zohm

at the **PPPL (PAC talks) Princeton, New Jersey**

Jan 10, 2018

This work is supported by the US DOE under DE-FC02-04ER54698.

DISCLAIMER

By

This report was prepared as an acount of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The World is Focused on the Advanced Tokamak Path to a Fusion Power Plant

- Presently envisaged steps beyond ITER are largely based on the conventional aspect ratio Advanced Tokamak
 - EU, Japan, Korea roadmaps to DEMO
 - CFETR & FNSF to test technologies
 - ARC MIT compact reactor
 - (EU stellarator: $W7X \rightarrow HELIAS$ -ITER $\rightarrow DEMO$)
- But conservative plasma assumptions make most proposals large and expensive
 - Low beta requires driven current & heat
 - Huge fusion power to run H&CD systems
 - High neutrons & divertor challenge

Typically 8m radius & 40% driven current !

The Advanced Tokamak Concept Offers a Much More Efficient Route To Fusion Energy

A Fusion Reactor Must Sustain its Current Non-inductively for Steady State Operation

• Sources of current:

$$I_{\text{steady state}} = I_{\text{steady state}} + I_{\text{self-driven}} + (I_{\text{NBI}} + I_{\text{waves}})$$

• Goal: High pressure + High self-driven current Fusion power Steady-state & high energy gain

- The Advanced Tokamak naturally generates a high self-driven current
 - "Bootstrap current" arises at high plasma pressure
 - Avoids the need for expensive current drive

Baron von Münchhausen

High Pressure Gradients Lead to a Net 'Bootstrap' Current

- 1. lons execute gyro-orbits about toroidal field
- 2. Gyro-orbits drift due to non-uniformity of magnetic field, tracing out "banana" orbits
- 3. Higher densities and velocities on orbits nearer the core lead to a net current

Tokamak steady state exploits a natural synergy between off-axis profiles and high β operation

 Pressure gradients drive bootstrap currents off axis

Tokamak steady state exploits a natural synergy between off-axis profiles and high β operation

- Pressure gradients drive bootstrap currents off axis
- Off-axis current distribution leads to higher pressure stability limit
 - As eigenmode interacts with wall more

Tokamak steady state exploits a natural synergy between off-axis profiles and high β operation

- Pressure gradients drive bootstrap currents off axis
- Off-axis current distribution leads to higher pressure stability limit
 - As eigenmode interacts with wall more
 - And reduced transport

Future Fusion Reactors Require Both High Plasma Pressure and Self-Driven Plasma Current

- Fusion power
 - $-\beta_{T} \sim P / B_{T}^{2}$
- Bootstrap fraction
 - $-\beta_{\rm P} \sim {\rm P} / {\rm I_{\rm P}}^2$
- \rightarrow High β_N is needed

This is the physics range DIII-D aims to explore But what devices do we need to get there?

Present Paths to Fusion Energy Are Not Optimized For a Speedy or Politically Acceptable Approach

- EU, Japan, Korea argue a 2 step approach after ITER
 - ITER \rightarrow DEMO \rightarrow Fusion Power Plant (FPP)
 - DEMO integrates material, breeding development, and power plant potential
 - But these DEMOs are very large and expensive program killers?
 - Does DEMO need to be this big to fulfill its demonstration mission?
- US has argued 3 step approach after ITER
 - ITER \rightarrow FNSF \rightarrow DEMO \rightarrow FPP
 - FNSF resolves materials and breeding
 - DEMO prepares for FPP, but will still not be efficient
 - This adds a generation timescale to fusion energy and seeks a machine that does not generate electricity! Is this credible?

A more compact DEMO could achieve materials and breeding mission while still providing proof of the power plant concept – Must learn enough that we could follow up with a competitive FPP

Next Step 'Advanced Tokamaks' Are Too Pessimistic on Plasma Physics

- EU DEMO studies based on pragmatic "what can we do now?"
 - Smaller scale & lower net electric than a power plant
 - 5.6T, ~8m, ~0.5GWe, β_N ~3.5, q_{95} ~4.5, f_{BS} ~62%
 - Still significant size & cost

Next Step 'Advanced Tokamaks' Are Too Pessimistic on Plasma Physics

- EU DEMO studies based on pragmatic "what can we do now?"
 - Smaller scale & lower net electric than a power plant
 - 5.6T, ~8m, ~0.5GWe, β_N ~3.5, q_{95} ~4.5, f_{BS} ~62%
 - Still significant size & cost

- MIT's ARC, a compact higher B device
 - Based on advances in superconducting technologies
 - 9T, ~3.3m, ~200MWe, β_N ~2.6, q_{95} ~7, f_{BS} ~63%
 - Significant technology assumptions
- Required current drive raises recirculating power

- Drives up size, cost, neutrons, heat load

Next Step 'Advanced Tokamaks' Are Too Pessimistic on Plasma Physics

• EU DEMO studies based on pragmatic "what can we do now?"

Mission of A Compact Pilot Plant Should Be To Bridge To Fusion Power Plant in One Step, Alongside ITER

Demonstrate net electricity production

- Integration of heat → electricity generation with reactor core
- Proof of potential device can power itself and make electricity (performance + efficient systems)
- Test nuclear materials in fusion reactor environment

- Require neutron loading and change-outs for rapid testing at rate that still leaves time for healing properties to emerge
- Demonstrate and optimize breeding technology
- Show configuration can be sustained in truly long pulse conditions (months)

A Compact Pilot Plant could be started soon, make energy, and lay the groundwork for low COE successors

Considerations for a Compact AT Pilot Plant

- World context and need for a Compact AT Pilot Plant
- Approach, Tools, Targets and Assumptions
- Integrated transport simulation to resolve design optimization
- Heat Load, H mode, Force Requirements
- Conclusions

• Fusion power scales with β_N , B, R and I_P

- DEMO should credibly challenge our research program
 - EU DEMO based on what we know now still large (and expensive)
 - Some confidence that we may make progress: higher B and β_{N}

- DEMO should credibly challenge our research program
 - EU DEMO based on what we know now still large (and expensive)
 - Some confidence that we may make progress: higher B and β_{N}
- Extension of EU DEMO indicates cheaper devices within reach*
 - Rapid decrease in device size possible... lower P_{elec}

- DEMO should credibly challenge our research program
 - EU DEMO based on what we know now still large (and expensive)
 - Some confidence that we may make progress: higher B and β_{N}
- Extension of EU DEMO indicates cheaper devices within reach*
 - Rapid decrease in device size possible... lower P_{elec}, higher B

- DEMO should credibly challenge our research program
 - EU DEMO based on what we know now still large (and expensive)
 - Some confidence that we may make progress: higher B and β_{N}

Extension of EU DEMO indicates cheaper devices within reach*

Rapid decrease in device size possible... lower P_{elec}, higher B & β_N

- DEMO should credibly challenge our research program
 - EU DEMO based on what we know now still large (and expensive)
 - Some confidence that we may make progress: higher B and β_{N}

Extension of EU DEMO indicates cheaper devices within reach*

– Rapid decrease in device size possible... lower $\mathsf{P}_{\mathsf{elec}}$, higher B & β_{N}

Sets challenge for research

- AT performance & control
- Divertor-PMI solution
- Materials. Superconductors.
 Breeding.

Is such a device possible?

Study Launched to Determine if Compact AT Pilot Plant Is Viable, and to Understand Dependencies

FASTRAN full physics suite#

- Integrated transport, pedestal, stability, H&CD solution
 - Latest physics models⁺
 - Starting point to identify realistic physics challenge

GA Systems Code (GASC)*

- Empirical known requirements
 - Rapid exploration of space
 - Initial engineering constraints and compatibility
 - Shows required performance

Analyses & Consultation on Key Topics

- Divertor challenge H mode access Neutron Load CD
 - Obviously many more topics to follow up later

[#]TGLF, EPED1, NUBEAM ESC equilibrium ⁺may need validation for reactor parameters

*GASC matches EU-DEMO when inputs matched

Parameter Constraints and Goals For Compact AT Pilot Plant

- ~200MW net electric \leftarrow prove integrated solution can work
 - Make enough energy & plant efficiency to close the loop
- Compact size ← must be affordable & enable a testing mission
 - Permit 3 6m (<=ITER), and 5 9T</p>
- Low recycling power \rightarrow 90% bootstrap, modest auxiliary heating
 - Implies high β_P + high performance $\rightarrow \beta_T$, \rightarrow high β_N
- Tolerable divertor challenge $\leftarrow \rightarrow$ H mode access
 - Trade off between these through core radiation assumption
- Tolerable neutron load for wall testing mission \leftarrow 2-4MW/m²
 - Not so high that self-healing properties are lost

Device could set some challenges on issues we expect to progress in the next few years

Considerations for a Compact AT Pilot Plant

- World context and need for a Compact AT Pilot Plant
- Approach, Tools, Targets and Assumptions
- Integrated transport simulation to resolve design optimization
- Heat Load, H mode, Force Requirements
- Conclusions

Initial FASTRAN Scan at 5m 5.3T Predicts Low β_N and Significant Recirculating Power !

- Vary power...
- Fully non-inductive point at 90MW

FASTRAN simulations at 5m, 12MA 5.3T, q=5.2, η_{th} =0.33 η_{CD} =0.25*, f_{GW} =1.1 (ped=0.85)

(+Overly pessimistic He ash model: $10 \tau_{E}$)

Initial FASTRAN Scan at 5m 5.3T Predicts Low β_N and Significant Recirculating Power !

- Vary power...
- Fully non-inductive point at 90MW
- Device relies on significant heating
 - Changes dynamic between BS:P_{CD}
 - Higher β_N (to lower P_{CD} needed) increases P_H need
 - AT gives no win

FASTRAN simulations at 5m, 12MA 5.3T, q=5.2, η_{th} =0.33 η_{CD} =0.25*, f_{GW} =1.1 (ped=0.85)

Initial FASTRAN Scan at 5m 5.3T Predicts Low β_N and Significant Recirculating Power !

- Vary power...
- Fully non-inductive point at 90MW
- Device relies on significant heating
 - Changes dynamic between BS:P_{CD}
 - Higher β_N (to
 lower P_{CD} needed)
 increases P_H need
 - AT gives no win

Need to raise performance !

FASTRAN simulations at 5m, 12MA 5.3T, q=5.2, η_{th} =0.33 η_{CD} =0.25*, f_{GW} =1.1 (ped=0.85)

1801-7255/26 - Buttery/PPPL/Jan 2018

(+Overly pessimistic He ash model: $10 \tau_{E}$)

All points here are fully noninductive

Float I_P for $f_{NI}=1$:

* η 's from EU-DEMO, cf ARC η_{th} =0.4 η_{CD} =0.43

All points here are fully noninductive

Float I_P for $f_{NI}=1$:

* η 's from EU-DEMO, cf ARC η_{th} =0.4 η_{CD} =0.43

All points here are fully noninductive

Float I_P for $f_{NI}=1$:

* η 's from EU-DEMO, cf ARC η_{th} =0.4 η_{CD} =0.43

All points here are fully noninductive

* η 's from EU-DEMO, cf ARC η_{tb} =0.4 η_{CD} =0.43

All points here are fully noninductive

Float I_P for f_{NI}=1:
Optimizes

- to low β_N ! - Confinement limited; need heating to
 - reach high β
- Drives up required P_{fus}
- Neutron rate limited
- Recirculating power is high
- Note conservative efficiencies here*

Making a lot of fusion to drive auxiliary heating !

1801-7255/32 - Buttery/PPPL/Jan 2018

GA Systems Code Analysis Shows Rapid Decrease in Required Fusion Power and Neutrons as H₉₈ Rises

Higher R, B, f_{GW} & η_{CD} reduce required fusion power

 Elongation reduces required → H₉₈ at constant P_{net}

GASC **fully non-inductive** simulations at 4.5m 7T, $\eta_{th}=0.4 \eta_{CD}=0.25$, $f_{GW}=1.1$, $H_{98}=1.6$, $P_{el}=200$ MW

1801-7255/33 - Buttery/PPPL/Jan 2018

5m Scan Shows Density to be a Key Levering Parameter

 $n_{\rho}^{ped} / n_{GW} = 0.85 \ 0.93 \ 1.0 \ (f_{GW} \sim 1.1 \rightarrow 1.3)$ FASTRAN: 12MA 5.3T 5m Vary heating to 5 1.1 explore tradeoffs 1.0 1.0 4 0.9 0.9 Increasing density 3 Higher β_N 0.8 0.8 required by - Raises P_{fus} 2 0.7 0.7 lower **B** Raises bootstrap 1 0.6 0.6 β_N T_{BS} T_{NI} Decreases P_{CD} 0.5 0.5 30 400 – Raises P_{el} & Q Error in He ash Was 4 MW/m^2 350 25 nodel, power at 4.5m 5.3T З 300 too low 200MWe attainable 20 250 15 200 at lower P_H and N_{wall} 2 150 10 100 5 50 P_{ele} Is there a 4m Wall (MW/m²) \bigcirc n solution? 80 100 120 140 80 100 120 140 40 60 80 100 120 140 40 60 40 60 P(MW)

FASTRAN simulations at 5m, 12MA 5.3T, q=5.2, η_{th} =0.33 η_{CD} =0.25*, f_{GW} =1.1 (ped=0.85)

1801-7255/34 - Buttery/PPPL/Jan 2018 (+

(+Overly pessimistic He ash model: $10 \tau_{E}$)

We Were Being a Bit Conservative with Efficiencies

- FASTRAN studies started with EU-DEMO η's →
 - Well below other device designs as based on what we can do now...

	η _{th}	η _{cd}	η_{th} . η_{cd}
EU DEMO	0.33	0.25	0.08
C-AT DEMO	0.33–0.4	0.25–0.4	0.08-0.16
ARC	0.4	0.43	0.28
ARIES ACT1	0.575	0.4	0.23
ARIES ACT2	0.45	0.4	0.18

- More efficient current drive technologies being explored →
 - Design and build commencing on DIII-D tokamak

Move to: η_{th} =0.4 η_{CD} =0.4 for further analyses

GASC Finds 4m Pilot Possible if H₉₈ is Good Enough

- Constrain GASC to 90% bootstrap & <u>no</u> further heating
 - We required H_{98} floats to meet this target. Density scanned.
- GASC solution at f_{GW}=1.3 and <u>heating only for CD</u> requires H₉₈=1.6
 - 7T, q₉₅~6.5, β_N ~3.5 N_W~2.3MW/m², P_{fus}~700MW \leftarrow much better!
 - High $\beta_{\rm P}$ plasma have reached this H₉₈ and q...
 - (GASC shows f_{GW} ~1.0 requires H₉₈~2.2)

GASC **fully non-inductive** simulations at 4m, η_{th} =0.4 η_{CD} =0.4, f_{GW} =1.1, H₉₈=1.6, P_{el}=200MW
DIII-D Experiments Suggest High H₉₈ with Good Performance (low q) Plausible (H=1 not a rule!)

- High H₉₈ region accessed with ITBs
 - ITB sustained in high β_P solution by strong
 Shafranov shift
 - Validates TGLF

1801-7255/37 - Buttery/PPPL/Jan 2018

DIII-D Experiments Suggest High H₉₈ with Good Performance (low q) Plausible (H=1 not a rule!)

- High H₉₈ region accessed with ITBs
 - ITB sustained in high β_P solution by strong
 Shafranov shift
 - Validates TGLF
- H scaling not necessarily valid for AT & reactor!!! (PS not happy with using H)

 Simulations project good transport & ITBs more easily sustained with broad J profile and shaping

GASC Finds 4m Pilot Possible if H₉₈ is Good Enough

- Constrain GASC to 90% bootstrap & <u>no</u> further heating
 - We required H_{98} floats to meet this target. Density scanned.

• GASC solution at f_{GW} =1.3 and <u>heating only for CD</u> requires H₉₈=1.6

- − 7T, q₉₅~6.5, $β_N$ ~3.5 N_W~2.3MW/m², P_{fus}~700MW ← much better!
- High $\beta_{\rm P}$ plasma have reached this H₉₈ and q...
- (GASC shows $f_{GW} \sim 1.0$ requires $H_{98} \sim 2.2$)

• Is this Greenwald fraction realistic?

- <u>Pedestal density</u> may be key limiting physics
 - Limit to ~ Greenwald fraction → Research challenge

A low recycling solution through the AT high β concept

GASC **fully non-inductive** simulations at 4m, $\eta_{th}=0.4 \eta_{CD}=0.4$, $f_{GW}=1.1$, $H_{98}=1.6$, $P_{el}=200$ MW

At n_{ped}/n_{GW}~1, FASTRAN Predicts Transport Good Enough for a 4m Pilot Plant

- Modest heating leads to f_{NI}~1
 - 65MW inc. CD
 - $-\beta_{N} \sim 4$, 92%BS
 - Conservative η_{th} =0.33 η_{CD} =0.25
 - Tolerable neutrons
- Increase in η offers further potential
 - 200MWe with conservative EU DEMO η values

 $H_{98}=1.23$ – lower than GASC \rightarrow high current needed ($q_{95}\sim4$) \rightarrow Disruption risk

FASTRAN simulations at 4m, 11MA 6T, η_{th} =0.33 η_{CD} =0.25, $n_{ped}/n_{GW}{\sim}1$, $f_{GW}{\sim}1.3$, He ash fixed

1801-7255/40 - Buttery/PPPL/Jan 2018

Increased B_T (7T) Enables Considerable Margin

Vary Plasma Current and Greenwald Fraction:

All fully non-inductive (P_H floats)

- Higher safety
 factor
 - Expect low disruptivity
- Now optimizes
 to high β_N
- Space to back off in density or other metrics
- Tolerable
 neutrons

Higher Toroidal Field Improves Core Confinement!

• Core confinement rises

- Puzzling pedestal dependence
- Not reflected in H₉₈ scaling
 - Reflects higher field devices have been underpowered?

7T vs 6T, Ip = 9.5 MA, $n_{p}^{Ped}/n_{gw} = 0.9$

[From FASTRAN solutions]

Equilibria Dominantly Bootstrap Driven with Residual Current Consistent with Realistic Current Drive Sources

- 80-90% Bootstrap
- 750kV off axis NBI
- 1.2GHz Helicon

Discharges also well suited to 230GHz top-launch ECH (not used here)

Promising self-consistent solution

Low Recirculating Power is Needed in a Compact Device

Power gains from

- Nuclear heating in blanket
- Reclaimed power from radiation & divertor
- Small B.O.P. from HTS
- Efficient thermal cycle
 & current drive

6T version, GASC

Considerations for a Compact AT Pilot Plant

- World context and need for a Compact AT Pilot Plant
- Approach, Tools, Targets and Assumptions
- Integrated transport simulation to resolve design optimization
- Heat Load, H mode, Force Requirements
- Conclusions

Divertor Challenge Metrics

- Power into SOL: $P_{SOL} = P_{alpha heat} + P_{H\&CD} P_{brems/synch/line radn}$
 - Ways to deal with this: core radiation, divertor radiation, spreading
- Divide P_{SOL} by midplane SOL area: Poloidal heat flux, $q_{\theta} \sim P_{SOL}$ / N R λ_{q}

- Plug in Eich scaling: $\mathbf{q}_{\theta} \sim \mathbf{P}_{SOL} \mathbf{B}_{\theta} / \mathbf{N} \mathbf{R}$ (N=1 or 2 divertors)

Ip drops out of q_{div} because poloidal field plays a role in divertor incidence angle as well as SOL width; and parallel flux expansion drops α

Divertor Challenge Metrics

Power into SOL: P_{SOL} = P_{alpha heat} + P_{H&CD} - P_{brems/synch/line radn}

- Ways to deal with this: core radiation, divertor radiation, spreading

- Divide P_{SOL} by midplane SOL area: Poloidal heat flux, q_θ ~ P_{SOL} / N R λ_q

- Plug in Eich scaling: $\mathbf{q}_{\theta} \sim \mathbf{P}_{SOL} \mathbf{B}_{\theta} / \mathbf{N} \mathbf{R}$ (N=1 or 2 divertors)

- But heat flux down flux tube must allows for field pitch at midplane
 - Parallel heat flux: $\mathbf{q}_{\parallel} \sim \mathbf{q}_{\theta} \mathbf{B} / \mathbf{B}_{\theta}$, $\sim \mathbf{P}_{SOL} \mathbf{B} / \mathbf{N} \mathbf{R}$
 - Heat flux to divertor: $\mathbf{q}_{div} \sim \mathbf{q}_{\parallel} \sin \alpha$ (intersect angle)

Ip drops out of q_{div} because poloidal field plays a role in divertor incidence angle as well as SOL width; and parallel flux expansion drops α

Divertor Challenge Metrics

Power into SOL: P_{SOL} = P_{alpha heat} + P_{H&CD} - P_{brems/synch/line radn}

- Ways to deal with this: core radiation, divertor radiation, spreading

- Divide P_{SOL} by midplane SOL area: Poloidal heat flux, q_θ ~ P_{SOL} / N R λ_q

- Plug in Eich scaling: $\mathbf{q}_{\theta} \sim \mathbf{P}_{SOL} \mathbf{B}_{\theta} / \mathbf{N} \mathbf{R}$ (N=1 or 2 divertors)

- But heat flux down flux tube must allows for field pitch at midplane
 - Parallel heat flux: $\mathbf{q}_{\parallel} \sim \mathbf{q}_{\theta} \mathbf{B} / \mathbf{B}_{\theta}$, $\sim \mathbf{P}_{SOL} \mathbf{B} / \mathbf{N} \mathbf{R}$
 - Heat flux to divertor: $\mathbf{q}_{div} \sim \mathbf{q}_{\parallel} \sin \alpha$ (intersect angle)
- Choice of metric depends on mechanism
 - Power to target: $q_{div} \sim P_{SOL} B / N R$
 - Detached radiative solution : $\mathbf{q}_{div} \sim \mathbf{P}_{SOL} \mathbf{B}_{\theta}$ / N R
- This has caused a lot of debate, we are looking at both, but consider radiative metric more relevant

Divertor

Separatrix

X-point

Core Radiation an Important Factor Trading Off Divertor Challenge and H mode Quality

- Adding impurities to radiate in core/pedestal reduces heat load into divertor
 - Alleviates level of divertor radiation required or heat flux spreading
 - But may drop P_{SOL} below L-H threshold
 - Factor 2 margin considered desirable to avoid confinement degradation
- So need to add core radiation to drop $P_{SOL} B_{\theta} / N R$ while ensuring $P_{SOL} / P_{L-H} > 2$

Divertor Challenge Can Be Lower Than ITER with Good H-mode Access Maintained

- Match ITER divertor challenge by adjusting core radiation
 - ITER 33% core radiation
 - At expected H, C-AT requires
 20-40% core radiation
 - Good H mode access margin
- Further increasing radiation eases divertor challenge and maintains good H-mode access
 - $f_{rad} = 67\%, f_{LH} = 2.5$
 - PB/RN = 63, $q_{div} = 7.3 MW/m^2$
- Benefits from two divertors & low fusion/recycling power

 η_{th} =0.4 n_{ped}/n_{GW}~1

Divertor Challenge Can Be Lower Than ITER with Good H-mode Access Maintained

- Match ITER divertor challenge by adjusting core radiation
 - ITER 33% core radiation
 - At expected H, C-AT requires
 40-60% core radiation
 - Good H mode access margin
- Further increasing radiation eases divertor challenge and maintains good H-mode access
 - $f_{rad} = 67\%, f_{LH} = 2.5$
 - PB/RN = 63, $q_{div} = 7.3 MW/m^2$
- Benefits from two divertors & low fusion/recycling power

 η_{th} =0.4 n_{ped}/n_{GW}~1

Adjust core radiation to match toroidal field metric

Fuel dilution due to core radiation remains a challenge for all DEMO concepts

 As core impurity fraction is increased, higher Z_{eff} drives down fuel ion fraction

$$f_i = 1 - 2f_{He} - Z_{imp}f_{imp}, \qquad P_{fus} \propto f_i^2 n^2 T^2 V_p$$

- even a small change in f_i dramatically reduces fusion power

Kallenbach et. al. have predicted impurity profiles for a R = 9m, a = 2.25m DEMO

- scaling to C-AT DEMO parameters results in a 60% reduction in fusion power, 2x more than the 33% assumed in this study
- $f_{Kr} = 1 \times 10^{-2}$ needed for 172 MW of core radiation
- a radiative model is needed in GASC to ensure self-consistancy

Structure Appears Viable Though Requires Advanced Approach for Stress Handling

- GASC uses "realistic" models for required thicknesses
 - Needs investigation...
- Forces are high in GASC model, at 1500MPa,
 - But < ARC's 1900MPa (GASC conv. Tech estimate)
- ARC argues use of bucking and whole TF/OH material to react the load
 - Reduces stress to 660MPa in ARC... do same for C-AT DEMO?

Clearly this needs much more in depth thought

Higher Field High T_C Superconductors Offer Advantages for Maintenance & Testing Program

- HTS may enable demountability
 - Greatly accelerates maintenance, improving duty cycle and thus device overall efficiency
- **Staged approach:** qualify materials & breeding, then net electric
- We are working on PF arrangements and vertical control
 - Place PF inside TF for better shaping
 - Use copper vertical control coil placed closer to the plasma (less shielding)

Vertical change out scheme in Japanese SN design

[Utoh, Fus. Eng. Des. 2017]

Considerations for a Compact AT Pilot Plant

- World context and need for a Compact AT Pilot Plant
- Approach, Tools, Targets and Assumptions
- Integrated transport simulation to resolve design optimization
- Heat Load, H mode, Force Requirements
- Conclusions

Compact-AT Compares Well with Other AT Reactors – Just Smaller and Cheaper

- 6 & 7T C-AT PPs
 - Lower efficiency
 - Higher efficiency
- Broadly consistent with other devices:
 - H₉₈, f_{BS}, f_{GW}, f_{Rad}
 - $N_{W}, q_{div}, P_{sep}B/R$

But C-AT PP smaller and lower P_{EL}

 7T C-AT: scope to lower f_{GW}, I_P, P_{H&CD}

	CATD FTRN	CATD FTRN	CATD FTRN	CATD FTRN	CATD FTRN	EU- Demo	ARC	ACT1	ACT2	ITER
R	4	4	4	4	4	7.85	3.3	6.25	9.75	6.2
В	6	6	7	7	7	5.6	9.2	6	8.75	5.3
I P	11	9.5	8.2	9.5	9.6	14	7.8	11	14	9
ηth	0.33	0.4	0.4	0.4	0.33	0.33	0.4	0.575	0.44	0.33
ηсь	0.25	0.4	0.4	0.4	0.25	0.25	0.43	0.4	0.4	0.25
q 95	4	5.7	7.1	6.2	6.1	4.5	7.2	4.5	8	5
f gw	1.3	1.3	1.28	1.15	1.31	1.21	0.67	1	1.3	1
f rad	83%	77%	80%	80%	80%	72%	80%	90%	90%	50%
βn	4	4.2	3.5	3.4	4	3.5	2.6	5.6	2.6	2.9
H 98	1.23	1.31	1.49	1.31	1.42	1.2	1.8	1.65	1.22	1.4
fßs	92%	83%	90%	80%	90%	62%	63%	91%	77%	80%
P fus	1280	746	636	775	1095	1960	525	1800	2600	400
P H&CD	73	74	51	82	63	115	38	42	105	130
Pel	200	200	200	200	200	400	190	1000	1000	0
Q	17	10.1	12.6	9.5	17.3	17	13	42	25	7
NW	3.9	1.93	1.71	2.1	2.95	?	2.5	2.45	1.46	?
PsepB/R	85	76	62	83	99	101	80	39	56	90
q div	9	7	~ITER	~ITER	~ITER	?	?	13	10	10

Compact-AT Compares Well with Other AT Reactors – Just Smaller and Cheaper

R

CATD

FTRN

4

- 6 & 7T C-AT PPs
 - Lower efficiency
 - Higher ef

Broadly cor

with other d

- H₉₈, f_{BS}, f_G

 $-N_{W}, q_{div}$

But C-AT PP

and lower P

7T C-AT: scc

lower f_{GW}, I_P

These are encouraging parameters that merit further investigation.

CATD

FTRN

4

CATD

FTRN

4

CATD

FTRN

4

EU-

DEMO

7.85

ARC

3.3

ACT1

6.25

6

11

.575

0.4

4.5

1

90%

5.6

.65

91%

800

42

000

42

ACT2

9.75

8.75

14

0.44

0.4

8

1.3

90%

2.6

1.22

77%

2600

105

1000

25

1.46

56

10

ITER

6.2

5.3

9

0.33

0.25

5

1

50%

2.9

1.4

80%

400

130

0

7

?

90

10

CATD

FTRN

4

Point is not to argue for a particular parameter set, but point out the direction & benefits of an <u>AT optimization</u>

A facility that developed key elements of fusion technology with modest scale and cost would be a compelling proposition

NW	3.9	1.93	1.71	2.1	2.95	?	2.5	2.45
P _{sep} B/R	85	76	62	83	99	101	80	39
q div	9	7	~ITER	~ITER	~ITER	?	?	13

1801-7255/57 - Buttery/PPPL/Jan 2018

LMI De LMA I

AT Approach Offers Benefits in the Development of a Compact Net Electric Fusion Facility

- First integrated transport/pedestal/CD/profile reactor simulations show converged steady state solutions possible
 - High density and high β_{N} reduce recirculating power
 - Could this approach improve margins in ARC on assumed field, current drive efficiency, confinement or recirculating power?
 - Higher field improves performance, design margins & safety
 - Leads to tolerable divertor challenge, good H mode access and acceptable neutron loading
 - Compatible with predicted current drive
- These factors should be considered in the optimization of a US net electric facility

A compact net electric facility poses a tractable research challenge we should use to motivate our work, so we can start an engineering design and construction in the US asap.

Compact AT Analysis Identifies Key Research Challenges U.S. Program Should Pursue

- Validate high β_N high density transient free scenario
- Proof advanced current drive technologies
- Develop divertor solution for long pulse erosion-free operation
- Develop high T_c demountable super-conductors
- Qualify candidate materials for nuclear environment

These issues are common to many concepts; advancing them benefits all \rightarrow should be US focus

Compact Pilot Plant Poses Tractable Research Challenge

A Compact Pilot Plant/FNSF Provides a Compelling Focus for U.S. That Complements ITER Participation

- ITER provides foundations for pilot plant and projection to FPP
 - <u>Already</u> proving technology and engineering at reactor scale
 - Reactor diagnostic and control solutions
 - Proof of the burning plasma concept
 - Projection of physics to larger scales
- Compact pilot plant proves the steady state potential
 - Net-electric with high performance core & efficient auxiliaries
 - Reactor hard materials for continuous operation
 - Breeding solution to make its own fuel
 - Sustainment of configuration in continuous operation

A Compact AT Pilot Plant is attractive as a modest scale energy generator, & would combine with ITER learning to project large scale fusion energy

Bonus slides...

Compact AT Analysis Identifies Research Challenges for the Fusion Community

Some aspects to look into soon for this concept:

- PF coil configuration and demountability
- Stress analysis started bucking calculations
- Nuclear materials and loading, change out strategy
- Device structure & shielding
- Refine physics analysis

Compact DEMO Concept Motivates Research To Prepare for a Decision to Proceed

- Relevant performance core plasma
 - Confinement, self-driven, stability
- Erosion free divertor solution
- Promising candidate materials for wall & divertor
- High Tc superconductors with demountable technology
- Current drive approach for residual drive & control
- A Compact DEMO would:
 - Learn from ITER technologies to develop its engineering solutions
 - Combine ITER learning to project larger future fusion power plants
 - Put U.S. at the forefront of the development of fusion energy

The U.S. has the leading scientific and engineering capability to progress a fusion reactor. It should focus its effort on the earliest possible commencement of a U.S. Compact DEMO Reactor.

Strong research mission for the U.S. community

GASC Reveals There is a Trade off in \textbf{B}_{T} and β_{N}

 $\eta_{th} = 0.4, \ \eta_{cd} = 0.4 \ P_{net} = 200 MW$

- Note y axis ranges!
- Add fastran???
- H98=1.3, fGW=1.33

But not in P_{LH}

GASC **fully non-inductive** simulations at 4.5m, $\eta_{th}=0.4 \eta_{CD}=0.4$, $f_{GW}=1.33$, 7T, $H_{98}=1.3$, $P_{el}=200$ MW

Elongation Scan at fixed 200MWe

DIII-D Research Important to Resolve Future Advance Tokamak Reactor Concepts

- Next step concepts based on AT, but:
 - Modest $\beta_N \rightarrow$ high recirculating power, large size, divertor/neutron challenged
- Simulations show efficient paths exploit the high β_{N} AT
 - ARIES ACT1 1GWe: 6m, 6T, $\beta_N \sim 5.6^*$
 - More compact FNSF/DEMO possible:
 - 200MW net electric
 - Tolerable heat & neutron load with H access
- Physics basis for all these solutions must be established → DIII-D
 - Important to optimize (high β_N , f_{GW}...)

Increased Pedestal Offers Considerably improves Optimization at R=4m, 6T

- High density favors high β_N
- Inferior He ash model used here
 - Explain
- Improved pedestal offers further benefits
 - (not shown)

FASTRAN simulations at 4m, η_{th} =0.33 η_{CD} =0.25*, f_{GW} =1.1 (ped=0.85)

1801-7255/68 - Buttery/PPPL/Jan 2018

For reference: Performance optimizes to lower q95, but device becomes pulsed

• Fully NI at q=5.2

1801-7255/69 - Buttery/PPPL/Jan 2018

Benchmark GASC to FASTRAN Shows Consistent Point at H₉₈~1.3

B_t=6 T, T_e=1.26, R₀=4.0 m, κ=2.0, δ =0.6, β _N=4.24

- Slight discrepancies in some parameter definitions account for slight differences
 - Radiation & H98

	GASC	FASTRAN
I _p (MA)	10.99	11.0
Q	13.42	13.5
P _{aux (} MW/m²)	91.8	92.3
V (m³)	256	256
0.8*P _f /A	3.32	3.35
H ₉₈	1.3	1.25
P _{net} (Zohm) ($\eta_{\rm th}$ =0.33, $\eta_{\rm CD}$ =0.25)		152
P_{net} (GASC) (η_{th} =0.33, η_{CD} =0.25)	116	

Reasonable agreement between approaches

FASTRAN TGLF/EPED Predicts 7T Provides Space to Reduce Density, Current or Auxiliary Power (to ~Zero?)

- Performance
 rises cf 6T
 - Challenges stability limit
 - And neutrons
- A near zero heating & CD solution looks possible
 - Being tested

1801-7255/71 - Buttery/PPPL/Jan 2018

FASTRAN simulations at 4m, 9.5MA 7T, $q\sim 5.4$, $\eta_{th}=\eta_{CD}=0.4$, $n_{ped}/n_{GW}\sim 1$, $f_{GW}\sim 1.3$

FASTRAN TGLF/EPED Predicts 7T Provides Space to Reduce Density, Current or Auxiliary Power (to ~Zero?)

