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ASDEX

No reliable theory-based way to predict confinement @pg”‘de m

How can we predict H-mode energy confinement?

® Scaling laws (statistical regressions):

1000 ¢ — o Simple, based on main engineering parameters
- DB2P&=1 t SR o Robust to capture dominant dependencies
L ITER-FEAT
i ) /f o Do not capture other important dependencies
o0 o Limited extrapolation capabilities
D E ASDEX
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A\Y
ASDEX

No reliable theory-based way to predict confinement @pg”de W

How can we predict H-mode energy confinement?

e Scaling laws (statistical regressions):
o Simple, based on main engineering parameters
o Robust to capture dominant dependencies
o Do not capture other important dependencies
o Limited extrapolation capabilities

e Simulations:
o Predict kinetic profiles (T,, T, n_, n,)
o Theory-based description of core transport

o Pedestal top often set from measurements or
to match global confinement scaling

o Transport models from core to plasma
boundary can include empirical elements

o Limited coupling between core, pedestal and
SOL effects

pedestal

> ppol
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The goal of this project G W

---------------------- \ INTEGRATED MODEL: combination of different
Integrated model models to simulate the confined plasma

4 )
Scrape Off Layer model
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Transport code — ASTRA
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The goal of this project G W
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Integrated model models to simulate the confined plasma

! “ 4
Scrape Off Layer model ,
OUR PROJECT: develop an integrated model to
\_ ) simulate the plasma using only global parameters
as input, and no information from measurements
4 ) of kinetic profiles
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N\ J OUR GOAL: take into account all the important
s ~ dependencies affecting global plasma confinement
MHD stability code -
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The goal of this project G W

pmm T T T s s s s mmmmm—mmm e . INTEGRATED MODEL: combination of different
Integrated model models to simulate the confined plasma

! “ 4
Scrape Off Layer model ,
OUR PROJECT: develop an integrated model to
\_ ) simulate the plasma using only global parameters
as input, and no information from measurements
4 ) of kinetic profiles

Transport code — ASTRA
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N\ J OUR GOAL: take into account all the important
s ~ dependencies affecting global plasma confinement
MHD stability code - Can this approach reproduce present
MISHKA experiments with higher accuracy
\_ J than an empirical scaling law?
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Modelling workflow

Input:

Bt' lp! l)heatl
geometry,
FDJ FNZ! Zeff

scan in Apeq

.

=\

Output:

kinetic
profiles,
T, Wi

12.04.2021
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ASTRA - transport R
code: core & pedestal

| model 1

HELENA - high
resolution equilibrium
reconstruction

1
. Y
2\
<:| MISHKA - MHD
stability code

Pedestal pressure

Pedestal pressure
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Scrape Off Layer model s W

4 Scrape Off Layer model "\ From the 2-point model:

Gives a relation between gas
. . . T _ 7P59pT[qCYlR 2/7 [A Kallenbach et al 2018
puffing, separatrix density, and esep — 3Kk, Nuclear Materials and Energy]
\ incoming neutral particles y
P.epB

8 ~ Nggep = 0.35 =P 3/14.
| 116 points ol &Sep (3n < Aqup >< sz >)
© 7 z
& 61 AUC s e 1(2Kkk,\72 mp
S 't -R™%(ysina) 2 — (=)™
5 7 Tmqcy1) € 2
O 4- ’
> e - (1.5 -10%*Pa/(at m~2s71))>p 1/*
(©
g 2 - /' Divertor neutral pressure /

7/
’ 2 _
0 _K/ : Il{ _ 9'948 l-‘0,sep = O((le-‘e,sep + Cdiv,wall(r‘D - l-‘pump))

0 2 4 6 8

_ a: ionization and CX procceses considering
predicted pg [Pa]

Franck-Condon neutrals (T, = 5eV)

— 0.63 —0.057 0.33 —-0.67
Po = 0-174‘FD l-‘NZ PNBI Vpump
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Confined plasma profiles prediction M W

& Transport code - ASTRA A
Evaluates the kinetic profiles
from separatrix to magnetic axis,

Scan in pedestal width (Apeq):
many ASTRA simulations, one for each A,eq

\using global plasma parameters ) Edge:
pedestal transport model (next
200 : : : — slides)
i_" Edge:
Core i pedestal Core:
=0T TGLF ~ L] model turbulent transport model TGLF
% i [G.M. Staebler PoP 2007, NF 2017]
% 100} | - Lo,sep
% Core * , Pedestal
3. sol &= | Aped Complete description of
I transport over the whole
Ne seps Le sep plasma radius, w/ b.c.
8.5 0.2 0. 0.6 58 1.0 from SOL model
(Ti,sep = 2Te,sep)

Ptor
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Pedestal transport model

® The EPED pedestal model:

12.04.2021

[P. B. Snyder et al 2009 PoP]
o assumes: AWy~(0.076,0.11)Bp> 4

O requires Ngtqp as input
o assumes Tg 1o = Tj top

AUG, DIII-D, and JET pedestals exhibit one common

feature: < VTe >/Te op = constant
[P.A. Schneider et al 2013 NF]

We implemented in our model the condition
=Vle> — _0.5 [1/cm]

Te top

NSTX-U / Magnetic Fusion Science meeting

T, pedestal width [yy]
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Pedestal pressure

Pedestal transport model 2> po, x Apeq M W

® Forevery Apeq Of the scan, ASTRA changes Xe peq until ?‘VTe> = —0.5 is satisfied
etop

® The obtained X peq is Used to evaluate Xjped:  Xiped = Xeped T XiNEO
e Modelling of the electron density: Dy ped = €p/xXeped + DnNEO

® cp/,, =0.06 and Cppeq = —0.05[m/s] obtained with an optimization

procedure trying to match different experimental pedestal density profiles

Pressure
Vpressure

0.060 0.073 0077 0081 0085 0089 075 080 085 090 095 100 075 080 085 000 095 1.00
Aped [Aptor] Ptor Ptor



Connection of the different regions ‘-

Example of the heat diffusivities for electrons and ions for a given Apeq:

- - - Before smoothing
— After smoothing

——_—q————r————l—.rr—

Tl I L
8.0 0.2 0.4 0.6 0.8 1.0 80 0.2 0.4 0.6 0.8 1.0

—

Ptor Ptor

TGLF, ) ’
diffusivities in the pedestal and transition regions

Xtr = €1t C2Xped
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Pedestal MHD stability calculation

-

o

MHD stability code - MISHKA

~

Evaluates the critical
pedestal pressure

) 4 ASTRA ,
g simulations !
9
‘5_ d transport
The MISHKA MHD stability € » curve
code is run on every ASTRA 3 o
simulation result to find PP ®,
the pedestal width ped
corresponding to the ° t A I
. = ) e [/
highest pedestal pressure 2 e g
that is peeling-ballooning ?5’_ =
modes (PBM) stable E MHD 1\ - @
3 curves o/ N model
S a1 result
~ - ()
i Apecl
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Pressure

Pressure
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Upgrade

ASTRA
simulations

Ptor

- = unstable
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Pedestal width solver

A\Y
ASDEX
Upgrade

o First iteration: rough scan to identify transition from stable = unstable

x Second iteration: finer scan to find highest stable pedestal pressure

MHD modes calculated by MISHKA

0.20 p— . . 0.20 ; 0.20
@ Firstiteration ® ® ’9“
% Seconditeration P
"00.16 ° "00.16 PY "00.16e “i
.00 UNSTABLE S UNSTABLE 5ol \\ UNSTABLE
c © T © 2e
= = = STy
O 0.08 o 0.08} O 0.08 Y o 1
> o o o o e g e
© © © o /o N
@ o) o) ¥ e
B 0.04p==========mmmmm "o B 0.04p========== ® o TTmmmmmmsssssmssss B 0.04f=Frm=mmms - j;'_j::"ig";": """""
STABLE * STABLE [ R ASTABLEN “e
. RN @
0.005375 5075 0080 0085 0090 0055 0003535553535 35 L TR R o 20
Aped [Aptor] Pedestal pressure [kPa] Toroidal mode number
Fully automated procedure to run the workflow on a large number of cases,
without requiring human intervention
12.04.2021 NSTX-U / Magnetic Fusion Science meeting 15



Model more accurate than IPB98(y,2) on AUG

This modeling workflow is tested by simulating 50 H-mode stationary
phases from ASDEX Upgrade discharges covering wide variations in:
B, =1.5-2.8(T] I, =0.6-1.2 [MA]

p
P.=2-14[MW] Qg5 =3-8
b, =0-8x10%[e/s]

6 =0.19-0.42

Vg = 42 - 92 [kV]

The model:

v is more accurate with respect
to the IPB98(y,2) scaling law

v’ can accurately capture the
effect of the different
operational parameters

800F

Predicted Wy, [k]]
=~ un (@) ~]
o o o o
o o @] (]

w

o

o
| ]

200F

100

A\Y
ASDEX
Upgrade

7

7/

Model

B VRE=5.94%
o IPB98(y, 2)

MRE=22.31%

300
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AS\bEX
... and than recent more accurate scaling laws W
This modeling workflow is tested by simulating 50 H-mode stationary
phases from ASDEX Upgrade discharges covering wide variations in:
B, =1.5-28][T] l, = 0.6-1.2 [MA]
Pt =2—14[MW] gy =3-8 ool o
b, =0-8x10%[e/s] Qo A o< //’
6§ =0.19-0.42 ) L3 o
Vg =42 -92 [kV] 700t +25% -/,/.
600} & A y oF |
o
= 500} XamB,
The model is even more 3 g o’ e
accurate than a regression é 200 002’,?
on ASDEX Upgrade data X %ﬁ o 'PB98(Y,2)
only (AUG-2W) “ook Il\iqriiziz-iil% |
MRE=14.45%
AUG-2W
200} A MRE=12.18% -
Model
@ MRE=5.94%
10006 =200 300 400 500 600 700 800
Measured Wy, [K]]

12.04.2021
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Core and pedestal confinement

A\Y
ASDEX
Upgrade

This modeling workflow is tested by simulating 50 H-mode stationary
phases from ASDEX Upgrade discharges covering wide variations in:

B, =1.5-28][T] Ip =0.6-1.2 [MA]
P.=2-14[MW] gy =3-8 400
b, =0-8x10%[e/s]

6 =0.19-0.42 350F
Vg = 42 - 92 [KV]

_ — 300
This approach can accurately )
predict the pedestal energy, and gﬁ 250
can describe the effect of the ©
different parameters on pedestal _48 200
confinement for this database ks

& 150
The core energy can be
overpredicted by TGLF due to 100}
low stiffness, or underpredicted
due to too low stabilization °Q

mechanisms (fast ions, B effects)

12.04.2021
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0
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Measured Wy, [k]]
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Density prediction

A\Y
ASDEX
Upgrade

This modeling workflow is tested by simulating 50 H-mode stationary
phases from ASDEX Upgrade discharges covering wide variations in:
B, =1.5-2.8(T] I, =0.6-1.2 [MA]

p
P.=2—-14[MW] Qg5 =3-8

b, =0-8x10%[e/s]
6 =0.19-0.42
Vg =42 - 92 [kV]

The model can accurately

predict the pedestal top density,
a great advantage over the EPED
model where this must be given

as input

The core density prediction is
also accurate, it might be

underpredicted due to too low

stabilization mechanisms (fast
ions, B effects)

12.04.2021

12

» Ne, ped q’/

|_!
00 o

Predicted ne [101%/m?3]
(@)}

q Neo 47

4 6 3 10
Measured ne [101%/m?3]
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Current scan at fixed fueling rate I'p

By, I, PnxBr PecrH Qo5 Me I'p Loft
[T] [A] [MW] [MW] [10"/m?] [10%%e/s]
m 25 06 10 1.77 7.1 4.8 0.46 1.80
m 25 1 10 2.00 4.0 6.3 0.46 1.45
JOOF X " Measured X
$ 1PBIBy2 — 320} <
600 _-- Model é -_-E
£240
=
— 500} X
vy 160 4 :
gﬁ b4 " Measured g
400t — 2409 Model
% E
300} =
= 160
= p 4
200F . . . . . > . .
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Ip [MA] Ip [MA]

Like the IPB98(y,2) the model well captures the change
in confinement caused by a current scan, with a
similar accuracy for these cases

12.04.2021 NSTX-U / Magnetic Fusion Science meeting
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grade

AS\\DEX
Heating power scan at fixed n, @p

" Telkev]
shot time B ]p Pnpr Prcra o5 Ne Lot T
s [T] [A] [MW] [MW] 10" /m?] ot
B 33616 5.2 2.5 0.8 5) 1.16 5.2 6.1 1.12 nl ___"'\\
33616 7.2 2.5 0.8 2.5 1.63 5.2 6.1 1.12 \
ar e,
S
PO easured | 200f | | I Bt
420f ¢ 1PB98,y2 - ; power, : .
400 _.D Model < E-E 180} < X ; & ' " Tilkev]
380k ] ;5,? 160} . °T
= 360} 4 ! 140} X 1 9
3‘5 340} | 200h X Measured ) ] ? L
_ P> Model L H“‘HE_
320r ~ 180} ; o
L g ir ‘:-H““-u. 1
300 £ 160f > 1 N
280} X 2 : : : : :
140¢F Irl;hlll}ﬁ‘.n'rr'ﬁl
260 5 6 7 4 5 6 7
Absorbed heating power[ MW] Absorbed heating power[MW] i ey
. EF s 1
Like the IPB98(y,2) the model well captures the change T
in confinement caused by a heating power scan, but is o
more accurate 2| o
= Measured I
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0 scan at fixed fueling rate I,

— Like the IPB98(y,2) the model well captures
the change in confinement caused by a
triangularity scan, but is more accurate.

— The change in global confinement is slightly
overestimated due to underestimated core
transport for the high triangularity case

600

x Measured ' 300k ' ' '
$ PBY9E(y,2) —
550 I Model 1 = 240 % 4
o g
soot ] s180f X
o =
= 120}
= 450 : - -
g"‘ 3I00F ¥ Measured
— P Model
400 12 240}
] =4
350 m - gﬁ 180f
120 B
30055 0.3 0.3 0.2 0.3 0.4
6 b
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0 scan at fixed fueling rate I', ‘- m

o
o
Y

¢ " Te[keV]
— For the same value of pedestal width and st
pressure the growth rates calculated by
MISHKA are lower at high triangularity s
— The pedestal is allowed to reach a higher 2
pressure at higher 6 1f — higns
— low &
0
6 " TifkeV]
5F -
0.14 T T
® Ilowbd
0.12 A hight .
3
= 0.10f
=z ..
v '*.“::ZL
©0.08 ______s'}_ "\\.*__.,.,,_-4'-’"’
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©
]
O

1L —o — \lh(/, A \\\‘ A “‘"::\a\. \\\\‘~.‘
0-00 15 20 25 30 35 40 e
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Scaling laws are less accurate at high fueling on AUG

800}
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AS\bEX
Negative impact of fueling rate on plasma confinement M W

We focus on an experimental scan in fueling rate I'p, which shows the typical

confinement degradation with gas puff 15 _— :
Experimental profiles
#3373

e S R I B e ' 8

' L . E . PR ©

Ry Em— i =] g

A 0 [ . ) ST | . , I . — lowhs
~ 2 3 Time(s) 4 5 i

[M G Dunne et al 2017 Plasma Phys. Control. Fusion] 00.85 0.9 0.95 1

Ppoloidal

1. Theincrease in fuelling causes
an increase in Ng sep, and shifts the density profile outwards

2. This shift is also evident in the gradients of the pressure profile, and this has a
strong impact on the ballooning stability = the pedestal pressure decreases

3. Corresponding to the increase in fueling, the pedestal pressure has decreased
by ~25%
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Ne,sep [102/mM3]

A\Y
ASDEX

Negative impact of fueling reproduced by integrated modeling @pgmde W

Simulations results

v 2.0

3.5 © predicted § sl EPED: 0.11v/ Bpol, ped ,/’ o — lowlp
¥ measured O lowlp /7 o mid My
midlp //' o l.6f —— highlp
- - H /
3.0 L el g hlgilrsl ;/,/
unstable S
‘© O stable / © = 1l2r
< ./ ©
2.5f ) § = 14k O o &
(;.i- /, 2 0 8
By o s
2.0F b 12}k /,/,n -
O 0.4}
7/
/- 0
1.5} . . . (a)- 1w, O (b) (c)
0.0 0.5 1.0 15 222.0 0.030 0.033 0.036 0.039 0.042 0(9_90 o.'92 0_'94 O.l96 0.'93 1.00
fueling[es™!] x10 Dped [Appol] Ppol

1. The SOL model describes correctly the ng s, increase with fueling
2. The predicted ppeq decreases with increasing fueling

3. Thisis because of the shift in the peak of the pressure gradients
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Beyond the possibilities of empirical scaling laws

N o vk

12.04.2021

A\Y
ASDEX
Upgrade

7 | i T
675 o 375 d
6501 o 1 =350
625} g
2§ 325 4 .
— 600} d 8
=3 4 300t , ;
= 575 T T
= 280 >
550 - Z >
525} X Measured | E 260 .
< 1PB98,y2 £
500l Model - = a0k B Measured |
#¥% Model + measured core PP Model B
0.0 0.5 1.0 2.0 0.0 0.5 1.0 2.0
fueling[es™!] x102? fueling [es™1] x10%2

The change in pedestal energy is well reproduced by the model
At lowest fueling the core energy is underpredicted by TGLF
Using experimental core profiles we get a very good agreement on W,

The IPB98(y,2) scaling law instead predicts an increase in W,, due to the

0.41

positive dependence on the density Tg th(1PB9g) X 1 A
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Capturing the impact of fueling rate on the kinetic profiles @Sg%ée
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The integrated model also allows us to understand the physics of interdependencies
connecting the different plasma regions: ~ SOL*  pedestal * 4 core
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Reproducing other subtle effects: V,g scan & m

NBI voltage scan: 2 similar discharges with
Puei =5 [MW], V5 =42 [kV], Vg =92[kV], Sn, v=42[kV] ~ 2Xsn, V=92[kV]

f f

8 NBI 3 NBI
sources sources
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Reproducing other subtle effects: Vg scan

NBI voltage scan: 2 similar discharges with

Pyg =5 [MW],

12.04.2021
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Reproducing other subtle effects: Vygscan |\

NBI voltage scan: 2 similar discharges with

Puei =5 [MW], V5 =42 [kV], Vg =92[kV], Sn, v=42[kv] = ZXSn, V=92[kV]
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Reproducing other subtle effects: V,g, scan e W

NBI voltage scan: 2 similar discharges with
Puei =5 [MW], V5 =42 [kV], Vg =92[kV], Sn, v=42[kv] = 2XSn, V=92[kV]
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200F ’ 0 d
2 o 1= < X
s = 15T ' The model well captures the
' 1 ¢ X . :
2ol L £ 150f - change in confinement caused
S| | asb . . by the NBI voltage scan
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300} o sty o = , in confinement with Vg,
. @l Model 125F _ _ ]
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This case demonstrates again of how important it is to take into account core,

pedestal, and SOL effects self-consistently: SOL* pedestal 4 core
Change in core particle Change in Change in pedestal
transport and sources |:> SOL neutrals MHD stability and

with different Vg, via recycling global confinement
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B, scan - W
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B, scan W
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A\Y
ASDEX

Application of the model to other devices U m

® The successful validation of the model on a database of AUG experiments is
very promising for a more physics based prediction of plasma confinement

® It is important to extend the validation to other devices to test the validity of
the assumptions and to gain confidence for the prediction of future devices

AUG
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Application of the model to other devices U W

® The successful validation of the model on a database of AUG experiments is
very promising for a more physics based prediction of plasma confinement

® |t is important to extend the validation to other devices to test the validity of
the assumptions and to gain confidence for the prediction of future devices

e A validation on C-mod and JET would be very interesting due to the very
different size and magnetic field from AUG. Pedestal model still valid?

e The SOL model contains elements that are AUG specific: scaling for py,
formulas for ng sep, Ng sep

e A database of 10 H-mode stationary phases with scans in fueling, and other
main engineering parameters sufficient to calibrate SOL model?

e For future devices like SPARC or ITER data from SOLPS simulations can be
used to obtain pg scaling and coefficients in ng gep, Ng sep formulas

12.04.2021 NSTX-U / Magnetic Fusion Science meeting %



Summary 1/2 U W

e Established automated workflow to predict entire radial domain of
H-mode confined plasmas, only using global parameters as inputs

e Core-edge coupling allows us to include physics effects determining plasma
confinement beyond the possibilities of empirical scaling laws: the model
reproduces not only dependencies captured by scaling laws, but also hidden
dependencies

® The self-consistent treatment of the boundary conditions is a key element
of this approach, and is necessary to capture the impact of fueling on
pedestal and global confinement

e The model can accurately predict the pedestal top density, which is a great
improvement over the current situation where this must be given as input

12.04.2021 NSTX-U / Magnetic Fusion Science meeting 37



Summary 2/2 U W

® The empirical elements of the model (pedestal and SOL) need to be
generalized in order to be applied also to different machines. In
particular, the scaling for the divertor neutral pressure pg is AUG specific

e This work demonstrated that the integration of different models can
provide important insights to better understand the physics of
interdependencies, particularly between different plasma regions,
which are not possible to explore otherwise

® In the long term the model could contribute to develop and optimize
ITER / DEMO scenarios to reach the best fusion performance

12.04.2021 NSTX-U / Magnetic Fusion Science meeting %8



Backup slides
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V\g SCan

NBI voltage scan: 2 similar discharges with

Py = 5 [MW],

Vg =42 [KV],  Vyg =92 [kV],
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Smoothing and connection of different regions &

Example of the heat diffusivities for electrons and ions:

- - - Before smoothing
— After smoothing

Xi [m?/s]

TGLF, NCLASS, ’
diffusivities in the pedestal and transition regions

Xtr = €1t C2Xped
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input: output:
2 options m, —> ASTRA = neutrals source — —> N gep
forn,:; D,N, — —> neutrals source —» ASTRA —> n,
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