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The Critical Gradient Upshift in Gyrokinetics




Cyclone Base Case Gyrokinetic Simulation
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Snapshot for the field line averaged ®(x, y)

ITG — Dimits ITG

— Strong zonal flow

e More turbulent behavior above
the Dimits regime

— Stronger non-zonal
catalyzed interactions
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In the Dimits regime (left), and above(right)
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: » Stronger zonal flow and larger shearing rate above the Dimits regime
I — Can not be fully explained by the shearing hypothesis



Analysis of the Resonance
Effect in Gyrokinetics
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Larger skewness and excess kurtosis for Qf° within the Dimits regime !
— limited number of nonlinear interactions within the Dimits regime |




Analysis of the Resonance
Effect in Gyrokinetics




ITG Fluid Model with Threshold Physics




Toroidal ITG two-field fluid model* with strong zonal flow

Dy . pressure in k space
¢y, : electrostatic potential in k space
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: Eigenmodes decomposed in p; and ¢,
: — track the energy of the stable and unstable modes
( P ) =B Vi+B,Vy 1 Keepthe zonal-flqw-catalyzc_ed nonlinearitigs only
0) '« (;r; are the coupling coefficient: how the eigenmodes couple
k | J _
1 » Solve the eigenmode amplitude evolution equations
" > easier to track how energy is exchanged

B; . eigenmode amplitude, Vi : right eigenvector
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1+ Find the lifetime of the triplet interaction with quasinormal statistics and Green’s function
: — also known as the triplet correlationtime t = —i(®@" + @' —®*)™!',® = w + Aw
|

« Express the third order moment in terms of the second order moments
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The Awin@ = w + Aw is called the eddy turnover rate
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|

1 —can break the resonance and reduce the triplet correlation time ©
: « Aw o |B|?, stronger turbulence leads to larger Aw
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The eddy turnover rate Aw; can be derived through renormalization,
its formula is given as below
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Zonal flow evolution equation
J 2
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Let B, = /kf,e'?, and the Markovianized solution for |S;]? is
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 The magnitude of the unstable mode |B;|? increases as
1. Tt decreases: shorter nonlinear interaction lifetime — stronger turbulence
2. Cjjk decreases: weaker nonlinear coupling between stable and unstable modes

— stronger turbulence
L Nondispersive eigenmode frequency can lead to infinite 7 and |3;|?> = 0




lon heat flux Q;=—Y k,Im(¢_;pr) can be expressed in terms of the eigenmodes
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Plug in the saturation formula for |3, |?
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« Stable modes transfer energy back to the mean field :
— Accounting for stable modes is key in getting saturation right !

1. Terry, P. W., P-Y. Li, M. J. Pueschel, and G. G. Whelan. Physical Review Letters 126, no. 2 (2021): 025004.




 Toroidal ITG Fluid Model With

» Track How Energy is Transfer Through

* Quantify the and of the Nonlinearities Between
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— strong resonance and nonlinear coupling when close to linear critical gradient




Analysis of the Resonance Effect in Gyrokinetics




Quantities important to turbulence saturation in the ITG fluid model
1. Triplet correlation time ;,,,,, = —i(@; + &, — @)1
2. Stable modes

However, can we also observe similar behavior in gyrokinetics?
We can check

1. How the heat flux reacts to stronger damping of stable modes which breaks the symmetry
2. Cross-correlation between modes with different wavenumbers
3. Resonance-breaking numerical experiments

Simulations for 2 and 3 were done with adiabatic electrons, for 1 with kinetic electrons
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» Electric potential at different wavenumbers coupled through zonal flow shows
strong coherency within the Dimits regime
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« The frequency spectrum within the Dimits regime are almost identical
« The frequency spectrum above the Dimits regime have large Aw




Standard
e Large ZF Damping
» Small ZF Damping

i
7.5 10.0

1« Acrtificial Zonal flow damping kills the Dimits shift l
! T;ji, decreases significantly because 7;p, = —i(w;" + (wp + Awp) — wi) ™" !
|

becomes much smaller if originally at resonance .

1. G. G. Whelan PhD Thesis
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« Dimits shift can also be killed by adding artificial real frequency to zonal modes 1
» Shearing rate does not decrease with extra artificial real frequency




Triplet Correlation Time in Quasilinear Model
Building




Assumptions
1. Coupling coefficients are nearly constant
2. T isalmost real

yw

)Re(T)
Qlin iy [1+[8%+500 (ke )" )

where y is the growth rate, w = 5 ™ is the quasilinear weight, (k) = o

Quasilinear Heat Flux Q ~ WT Zk (kz
1

|
 Calculate T
|

|
1 1. Zonal flow frequencies are set to 0

1 2. Stable mode frequencies approximated as the mirror modes of the unstable modes
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Grad-n TEM also shows strong zonal flow and Dimits shift!
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« The triplet correlation time improves the quasilinear model significantly
« The collisional case violates the zero zonal flow complex frequency assumption

1. Duff, J. R., Williams, Z. R., Brower, D. L., Chapman, B. E., Ding, W. X., Pueschel, M. J., ... & Terry, P. W. (2018) Physics of Plasmas, 25(1), 010701.
2. Williams, Z. R., Pueschel, M. J., Terry, P. W., & Hauff, T. (2017). Physics of Plasmas, 24(12), 122309.




» Saturation theory accounting for stable modes explains Dimits shift: resonant
nonlinear interactions

» Quasilinear model improved with triplet correlation time  predicts transport in
Dimits regime

» Verified against nonlinear gyrokinetic simulations

» Greatly improved Dimits shift predictions in grad-n TEM turbulence

» Two more detailed paper on the way

1. Terry, P. W,, Li, P. Y., Pueschel, M. J., & Whelan, G. G. (2021). Physical Review Letters, 126(2), 025004.




