

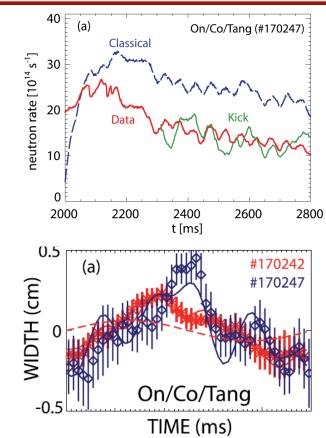
NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Validation of model for interaction between fast ion and neoclassical tearing mode in NSTX

James J. Yang Princeton Plasma Physics Laboratory

NSTX-U / Magnetic Fusion Science Meeting September 13, 2021

This work is supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under contract number DE-AC02-09CH11466.

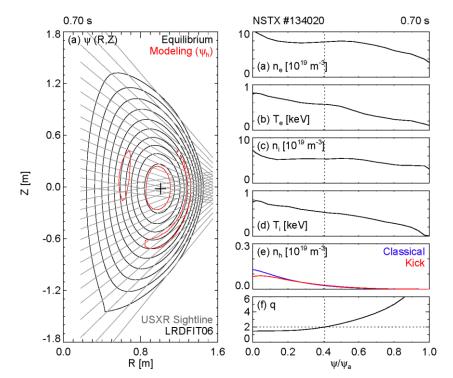

Outline

- Introduction
- Fast ion / NTM interaction analysis
 - Validation of kick model: Fast ion transport simulation
 - Validation of NTM stability model using kick model parameters as input
- Numerical experiments
 - Scan of relative phase of NTM to core kink
 - Dependence of energy exchange to mode combination
 - Scan of mode amplitude and orbit stochasticization threshold
- Conclusion
- Extended future work

Do fast ions interact with NTM as they do with AE?

- Fast ions interact with Alfvén eigenmodes (AEs) [1]
- Fast ions "seemingly" interact with neoclassical tearing modes (NTMs)
 - NTMs cause fast ion transport
 - Model validated qualitatively [2] and quantitatively [3]
 - Analytical model for stability cannot be validated [3]
 - NTM chirp is correlated with fast ion activity [4]

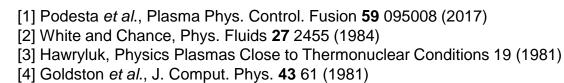
Podestà *et al.*, Plasma Phys. Control. Fusion **59** 095008 (2017)
 Zweben *et al.*, Nucl. Fusion **39** 1097 (1999)
 Heidbrink *et al.*, Nucl. Fusion **58** 082027 (2018)
 Fredrickson, Phys. Plasmas **9** 548 (2002)

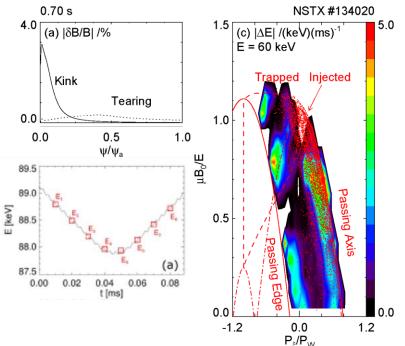


INSTX-U

Introduction

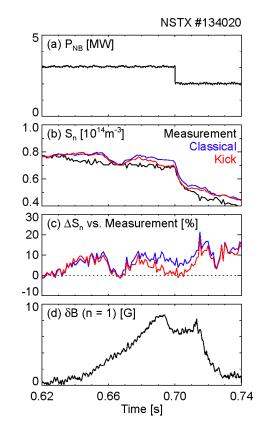
NTM stability model with fast ion is validated utilizing kick model


- Do fast ions affect NTM stability?
 - Analytical model in Rutherford equation
 - Requires input of fast ion and NTM parameters
- Kick model [1] can provide necessary data
 - Thermal ion profiles
 - Fast ion profiles (replaces measurement)
 - Equilibrium profiles
 - NSTX 2/1 NTM discharge is analyzed [2]



[1] Podestà *et al.*, Plasma Phys. Control. Fusion **56** 055063 (2014)
[2] La Haye *et al.*, Phys. Plasmas **19** 062506 (2012)

Kick model calculates transport with wave-particle interaction [1]


- ORBIT computes wave-particle interaction [2]
 - Test fast ion response to NTM is followed
 - Measured island parameters are input
- TRANSP computes transport [3]
 - Probability of fast ion response is input
 - NUBEAM [4] computes fast ion response
 - Kick (classical) with (without) NTM
 - All parameters in are calculated selfconsistently

Fast ion transport by NTM is modeled successfully by kick model

- Neutron rate is measured during NSTX NTM discharge [1]
 - Utilizing scintillators calibrated by fission chambers [2]
- Neutron rate simulated by kick model agrees with the measurement
 - In comparison, classical model overestimates neutron rate
 - No free parameters are introduced
 - This result gives confidence to using kick model output for the stability analysis

[1] La Haye *et al.*, Phys. Plasmas **19** 062506 (2012)
[2] Roquemore *et al.*, presented in 24th SOFE SP1-39 (2011)

Analytical model is introduced for NTM stability with fast ions

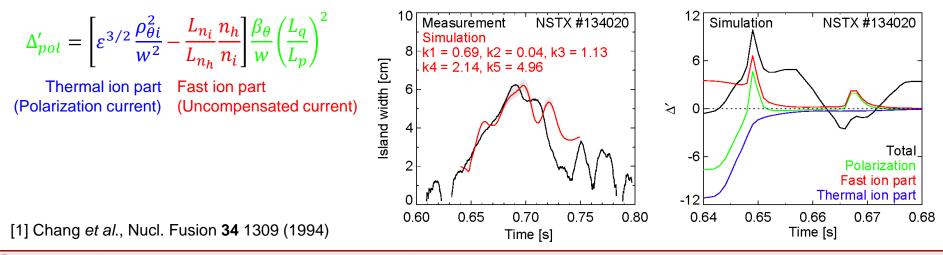
- Generalized Rutherford equation (GRE) governs NTM stability [1]
- Fast ions generate different currents depending on island versus orbit size ratio
 - When island is as large as orbit, parallel current is generated [2]
 - Otherwise, orbit averaging causes uncompensated cross field current [3]

$$\frac{1}{k_3} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_1 \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} - Nw \right] - k_2 \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_4 \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$
Classical [4] Bootstrap [4] Polarization [5] Curvature [6]
Parallel current [2] Uncompensated cross field current [3]

 [1] Poli et al., Nucl. Fusion 58 016007 (2018)
 [4]

 [2] Hegna and Bhattacharjee, Phys. Rev. Lett. 63 2056 (1989)
 [5]

 [3] Cai Nucl. Fusion 56 126016 (2016)
 [6]

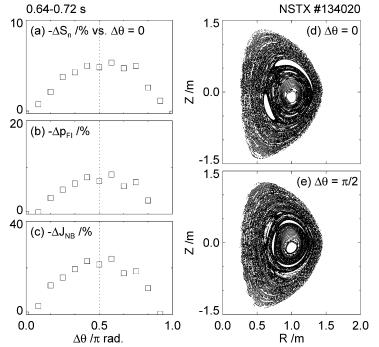

[4] Fredrickson *et al.*, Phys. Plasmas **7** 4112 (2000)
[5] Gates *et al.*, Nucl. Fusion **37** 1593 (1997)
[6] Gorelenkov *et al.*, Phys. Plasmas **3** 3379 (1996)

NSTX-U

Modeling of EP / NTM interaction in NSTX (NSTX-U / Magnetic Fusion Science Meeting, September 13, 2021)

Fast ion term is essential for GRE modeling of island width

- Island width is measured by Mirnov coil and scaled by synthetic SXR diagnostic [1]
- Island width simulated by GRE with fast ion term agrees with the measurement
 - Free parameters are determined by numerical optimization
 - Fast ion term contribution is significant at island onset phase


NSTX-U

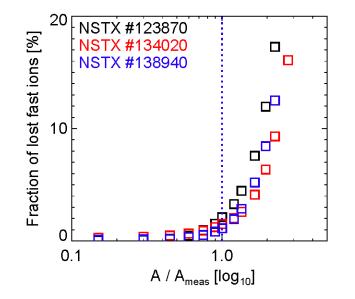
Modeling of EP / NTM interaction in NSTX (NSTX-U / Magnetic Fusion Science Meeting, September 13, 2021)

Relative phase of NTM and kink affects fast ion transport

- Core (1,1) kink accompanies NTM in NSTX [1]
 - Non-resonant with $q_{\min} \approx 1.2$
 - Coupled to NTM (relative phase fixed at zero)
- Relative phase affects fast ion transport [2]
 - Transport channel may be formed[†]
 - Fast ions being displaced by kink, then NTM
- Kink and NTM may be coupled via fast ions

† Also suggested for the case of kink / AE coupling [3]
[1] Gerhardt *et al.*, Nucl. Fusion **51** 073031 (2011)
[2] Yang *et al.*, Plasma Phys. Control. Fusion **63** 045003 (2021)
[3] Duong *et al.*, Nucl. Fusion **33** 749 (1993)

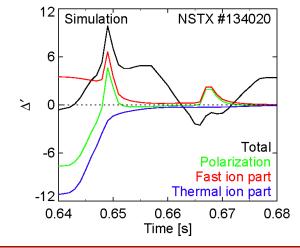
Energy exchange depends on mode combination


- Fast ion ΔE comes from MHD modes
 No other energy source / sink
- Mode combination affects ΔE structure [1]
 - Also seen in DIII-D [2]
 - Kink (NTM) affects ΔE by NTM (kink)
 - Kink and NTM are synergistic when interacting with fast ions
- Kink and NTM may be affecting each other via fast ions

[1] Yang *et al.*, Plasma Phys. Control. Fusion **63** 045003 (2021)
[2] Liu *et al.*, Nucl. Fusion **60** 112009 (2020)

Saturated NTM island width is orbit stochasticization threshold

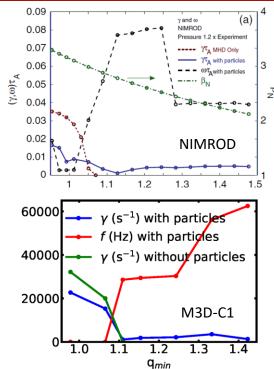
- Fast ion orbits turn stochastic when w > w_{thres} [1]
 Threshold w_{thres} is found by numerical scan
- NTM island width saturates at the threshold [2]
 - Unlike in DIII-D when no kink mode is present [3]
 - Orbit becomes stochastic by overlapping phase space islands from kink and NTM
- Fast ions and/or kink may be suppressing NTM


Heidbrink and White, Phys. Plasmas **27** 030901 (2020)
 Yang *et al.*, Plasma Phys. Control. Fusion **63** 045003 (2021)
 Bardóczi *et al.*, Plasma Phys. Control. Fusion **61** 055012 (2019)

NSTX-U

10/14

No evidence rejects possibility that fast ions affect NTM stability


- Fast ion term is essential for GRE modeling of NTM island width
- Kick model is used for necessary input to NTM stability analysis
 - All parameters are calculated self-consistently
 - Successful fast ion transport simulation validates the procedure
- Numerical experiments support GRE modeling result
 - NTM and kink may be coupled via fast ion population
 - NTM and kink may be affecting each other via fast ions
 - NTM may be suppressed as orbits become stochastic

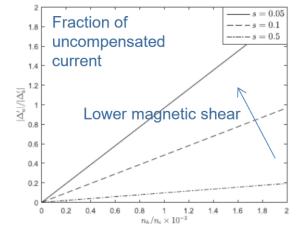
Conclusion

Dedicated experiment will follow to confirm the assertion

- M3D-C1 [1] with fast ions will support analytical model
 - Preliminary result reproduces NIMROD result [2]
 - Can input realistic fast ion distribution from kick model
- Analysis procedure will be improved
 - ASCOT [3] will help validate use of ORBIT in NSTX/U
 - Free parameter will be determined from a database
- Dedicated experiments will follow in NSTX-U
 - Contributions to MAST-U and DIII-D are also considered

[1] Breslau et al., Phys. Plasmas 16 092503 (2009)

[2] Brennan *et al.*, Nucl. Fusion **52** 033004 (2012)


[3] Varje et al., arXiv https://arxiv.org/abs/1908.02482 (2019)

Future Work

Further experimental study will help answer bigger question

- Quantitative prediction capability for EP interaction with NTM is not yet achieved
 - EP transport model with NTM can predict with some accuracy
 - NTM stability model with EP model is being developed
 - EP effect may become more significant at low magnetic shear plasmas [1]
- Controlled experiments provide necessary data points
 - Similar work has been done for other topics
 - Impact of rotation and EP on IWM stability (NSTX) [2]
 - Impact of rotation on NTM stability (DIII-D) [3]

[1] Cai, Nucl. Fusion **56** 126016 (2016)
 [2] Menard *et al.*, Phys. Rev. Lett. **113** 255002 (2014)
 [3] Buttery *et al.*, Phys. Plasmas **15** 056115 (2008)

Fast ion density fraction

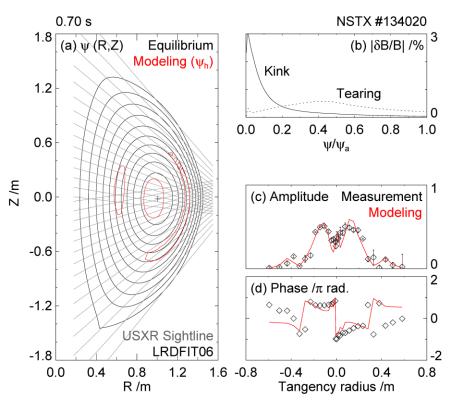
Summary of research plans by year [1]

- Years 2022-3 for advancement and testing of reduced energetic particle models
 - Interpretation of fast ion phase space dependence on NTM⁺
 - Development of predictive capability for NTM⁺ stability
- Years 2024-5 for integration of stability and transport models
 Predictive model for interaction between fast ion and NTM[†] within TRANSP
- Key diagnostic and modeling tools
 - Diagnostic: Magnetics, SXR[‡], FIDA
 - Modeling: LRDFIT, ORBIT/ASCOT, M3D-C1

† As well as kink mode‡ As well as BES and/or reflectometry[1] In line with Kaye *et al.*, NSTX-U Five Year Plan, EP-1 (2020)

INSTX-U

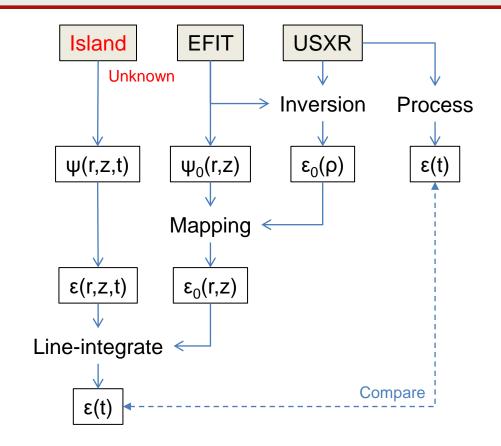
Development of synthetic soft x-ray fluctuation diagnostics


- Overview & flow chart
- Diagnostic setup
 - Pinhole diode array for soft x-ray radiometry
 - Signal processing
 - Equilibrium and forward-modeling
 - Fit results
- · Analysis of fit quality
 - Spatial resolution of diagnostic
 - Sensitivity study: Need for determination of island location initial guess

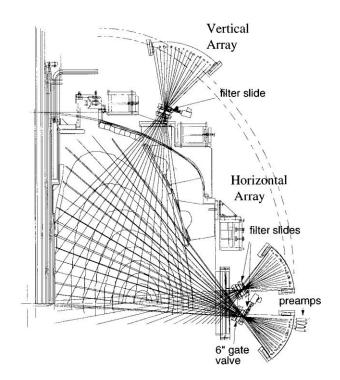
Appendix

Synthetic diagnostic utilizes analytic model and SXR fluctuation

- SXR fluctuation phase jumps at modes
 - Three π -jumps are observed typically
 - One for kink, two for tearing [1]
- Overview of synthetic diagnostics
 - Analytic model for mode structures [1]
 - Mirnov coil, CHERS [2], SXR [3]
 - Automation of interactive analysis code by Eric Fredrickson [1]

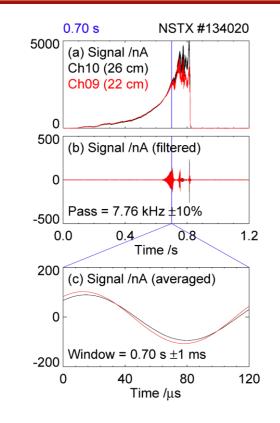

[1] Fredrickson *et al.*, Rev. Sci. Instrum. **59** 1797 (1988)
 [2] Bell *et al.*, Phys. Plasmas **17** 082507 (2010)
 [3] Stutman *et al.*, Rev. Sci. Instrum. **74** 1982 (2003)

Flowchart shows algorithm of synthetic diagnostics


- Tomography of perturbed emissivity [1]
 - Not alike equilibrium emissivity
 - Inaccurate for multiple modes [2]
- Synthetic diagnostic scheme [3]
 - Automated human intuition part
 - Numerical optimization [4]

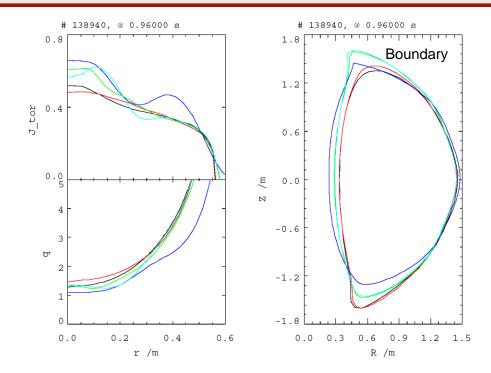
[1] Nagayama Jpn. J. Appl. Phys. **20** L779 (1981)
 [2] Nagayama Phys. Plasmas **3** 2681 (1996)
 [3] Fredrickson *et al.*, Rev. Sci. Instrum. **59** 1797 (1988)
 [4] Levenberg, Quart. Appl. Math. **2** 164 (1944)

Synthetic diagnostic utilizes already installed SXR radiometry


- Filtered pinhole diodes (Be 5 µm) [1]
 - Sampled at 5 MHz
 - USXR range (10 300 Å)
 - Edge resolution[†] < 6 cm
 - Core resolution[†] > 1 cm
- Utilizes horizontal array (both angles)
 - Since extra constraints are useful
 - Added measurements at $\pi/2$

[1] Stutman et al., Rev. Sci. Instrum. 74 1982 (2003)

Perturbed emissivity is extracted from SXR measurement


- Numerical band pass filter is applied
 Pass band set at mode frequency ± 10%
- Numerical periodic averaging is applied
 - Find zero-crossings and accumulate
 - For further reduction of measurement noise

Equilibrium reconstruction by LRDFIT06 is utilized

- Forward modeling requires good q
- LRDFIT is useful for MSE + EFIT
 - Boundary should agree with EFIT
 - 06 and 12 meet criteria
 - 06 has smoother profiles
 - 06 is considered more reliable [1]

EFIT01	Magnetics (MD)		
EFIT02	MD + Kinetic		
LRDFIT06	MD + MSE + T _e		
LRDFIT09	MD + MSE + T _e + V _{ϕ}		
LRDFIT12	$MD + MSE + T_e + P_{th}$		

[1] Podestà, private conversation with Menard

Perturbed emissivity is forward-modeled using analytic model [1]

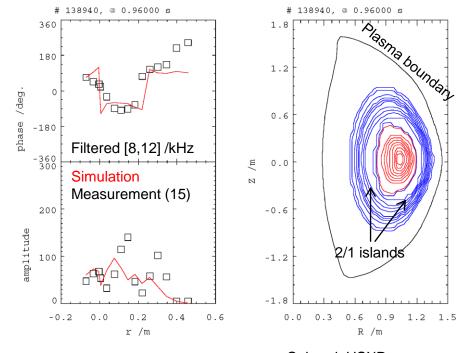
• Kink mode displacement

$$\xi = \frac{\delta}{[1 + (r/r_k)^p]} \cos(m\theta_k - n\phi + \omega t)$$

• Tearing mode perturbed helical flux

$$\delta \psi_{m,n} = w^2 (16r_s/sB_\theta) \cos(m\theta_s - n\phi + \omega t)$$

- Seven parameters marked in red are used in multi-curve fitting [2]
- Equilibrium emissivity profile[†] is used to convert perturbed fields to perturbed emissivity

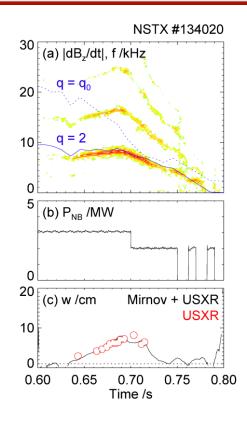

† Measured emissivity minus perturbed emissivity, then inversion
[1] Fredrickson *et al.*, Rev. Sci. Instrum. **59** 1797 (1988)
[2] Levenberg, Quart. Appl. Math. **2** 164 (1944)

NSTX-U

Sample synthetic diagnostic result shows 2/1 islands

- Amplitudes & phases are constraints
 Added measurements at π/2
- Unknowns are seven mode parameters
- Sample result is shown

ТМ	Location	24.5	±	0.2 cm
	Width	8.0	±	1.4 cm
	Phase	-4.0	±	17.6 °
Kink	Location	10.4	±	3.8 cm
	Amplitude	2.8	±	1.9 cm
	Power	5.3	±	4.7
	Rel. Phase	4.1	±	17.6 °


Island width is calculated from Mirnov coil, EFIT, and SXR data

- Time evolution of mode amplitudes is required for kick model
- Mirnov coil signal b_{θ} is used to compute w(t) [1]:

 $w^2 = g(rb_rq/mB_\theta q')$

where perturbed radial field is approximated by [2]: $b_r \approx (1/2) (r_w/r)^{m+1} b_\theta$

- Constant g is found by scaling with SXR results
- Captures island smaller than SXR spatial resolution

[1] Chang *et al.*, NF **34** 1309 (1994)
[2] La Haye *et al.*, PoP **7** 3349 (2000)

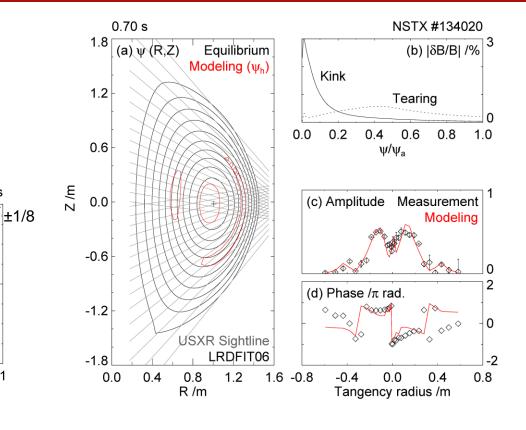
Diagnostic provides relative phase of kink and tearing modes

0.64-0.72 s

(b) Phase $/\pi$

0

Tearing


 $\sigma_{XY}/\sigma_X\sigma_Y = 0.83$

0 Xink

-1

0.72

- More constraints, better fit accuracy
- Relative amplitude and phase are fit
 - Amplitude ratio is rather constant
 - Relative phase is fixed at zero

0.64

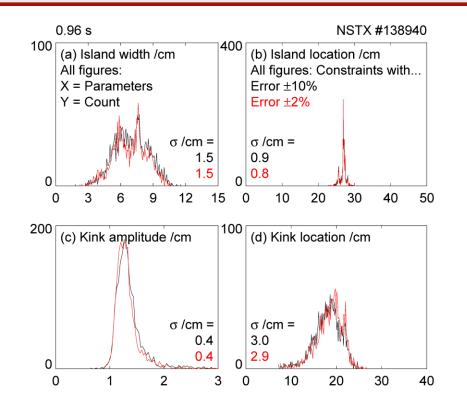
10

NSTX #134020

0.66

Tearing

(a) Width/Displacement /cm

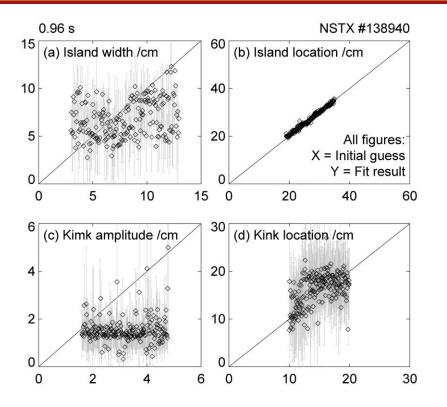

0.68

Time /s

 $\sigma_{XY}/\sigma_X\sigma_Y = 0.65$

0.70

Fit uncertainties are comparable to SXR resolution

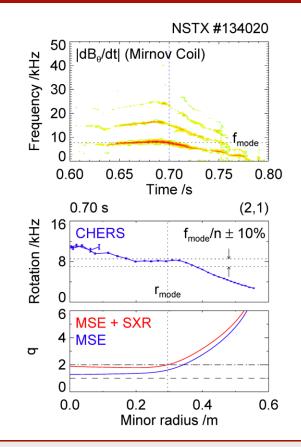


- Island width fit uncertainty is
 - At a = 0.26 m, 3.9 cm⁺
 - At a = 0.25 m, ±1.4 cm from analysis
- White noise makes small difference
 - Real level is at 1.5%[‡]
 - Does not impact much when rose to typical 10%

+ NSTX #138940, 0.96 s
+ NSTX #138940, chord 9, after filtering. Background at 0 – 0.08 s, signal at 0.96 s

Fit of island location is sensitive to initial guess

- Initial guess is needed for fit
 - Scanned range of initial guesses
 - Other parameters: Small correlation
 - Island location: Fit result has linear correlation with initial guess
- Good initial guess is needed for r_{mode}

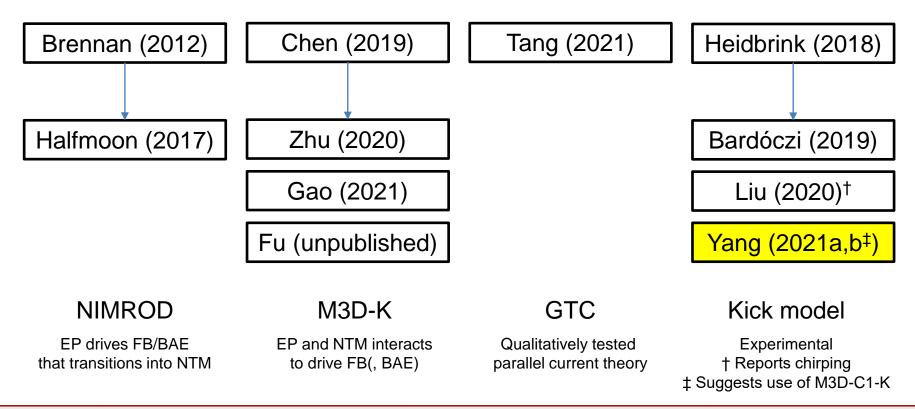

Measurements determine initial guess for island location

- Good initial guess for island location is needed
- Mirnov coil spectrum and CHERS are utilized
 - Mode frequency and *n* from Mirnov coil spectrum
 - Plasma rotation frequency profile from CHERS [1]
 - Island location is where[†]

 $f_{mode} = n f_{plasma}$

- Island location is updated at each iteration of fit
 - Useful output of MHD (SXR) constrained q profile [2]

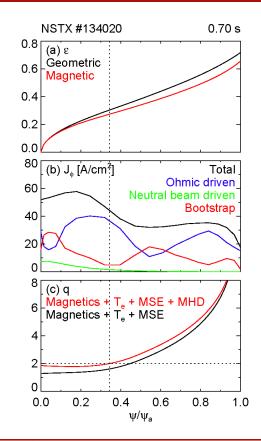
† Allowed ±10% tolerance
[1] Bell *et al.*, Phys. Plasmas **17** 082507 (2010)
[2] Chang *et al.*, Nucl. Fusion **34** 1309 (1994)


NSTX-U

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Backup Slides

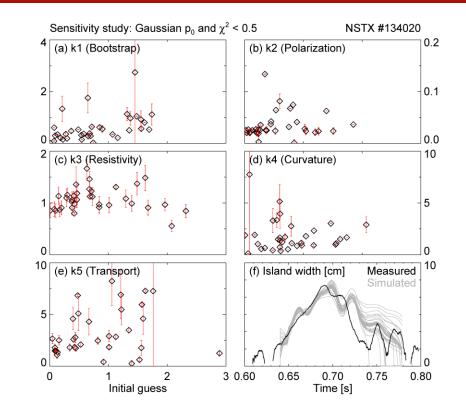
This work is supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under contract number DE-AC02-09CH11466.


NSTX-U

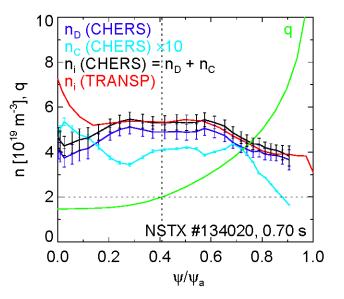
Premises for GRE modeling with fast ion term

- GRE takes input of both thermal and fast ion parameters
 - Integrated modeling provides self-consistent parameters
 - Main input is MSE-constrained *q* profile [1] with correction with NTM location
 - Bootstrap current is calculated by NCLASS module [2]
 - Magnetic inverse aspect ratio is used[†] [3]

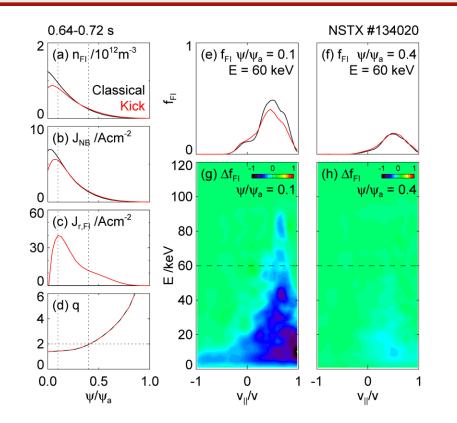
$$\varepsilon_B \equiv \frac{B_{in} - B_{out}}{B_{in} + B_{out}}$$


† Contributes to small island effect: polarization and curvature terms
[1] Levinton and Yuh, Rev. Sci. Instrum. **79** 10F522 (2008)
[2] Houlberg *et al.*, Phys. Plasmas **4** 3230 (1997)
[3] La Haye *et al.*, Phys. Plasmas **19** 062506 (2012)

NSTX-U


Sensitivity study shows our fit is mathematical optimum

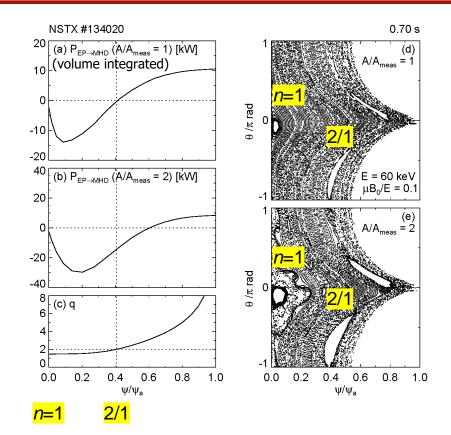
- Fit might depend on initial guess
 - Assigned random initial guess
 - Gaussian distribution (positive side)
 - Finding if solution is mathematical optimum
- Flat response means fit is not sensitive
 - Selected only small χ^2 results
 - Flat for most parameters
 - Initial guess of k > 2 rarely survives
 - Large uncertainty for k₅
 - Electron transport wash-up effect


Thermal ion gradient scale length is cross checked

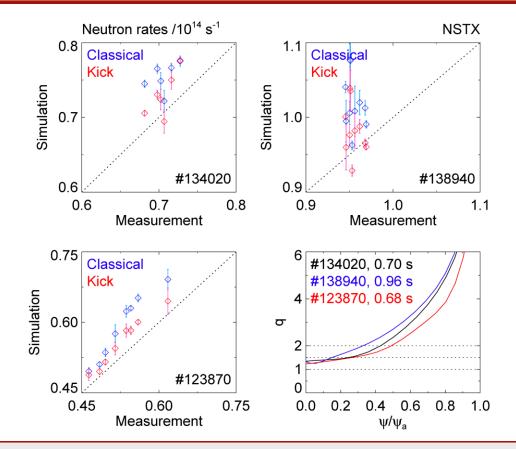
- EP contribution depends on $n_i / \nabla n_i$
 - Known to have large uncertainty
 - Due to "nonlinear" processing involving $Z_{\rm eff}$
- TRANSP is used to cross check the data
 - Good agreement near q = 2
 - Meaning CHERS is consistent with other diagnostics such as TS
 - Divergence near the core can be explained
 - End of discharge C accumulation
 - Bump in electron density

Fast ion transport causes neutron rate to drop

- Fast ion distribution is output
 - Core fast ions are depleted
 - Core current drive is reduced
 - Radial flow of fast ions is clear
 - Fast ion distribution at q = 2 surface is unchanged
- Consistent with previous slide
 - Neutrons originate mostly at core



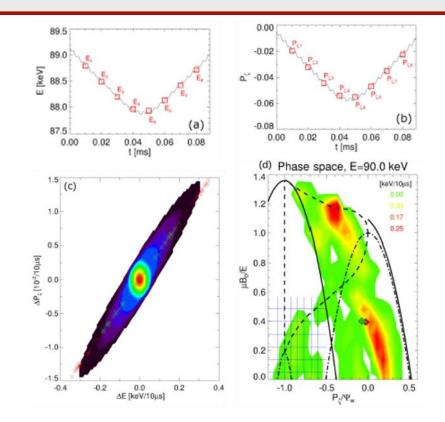
EP correction explains island saturation at orbit stochasticization


- Kick model: Energy exchange of EP/NTM
 Convention: P < 0 = mode power loss
 - P < 0 at q = 2 when $A > A_{meas}$
- EP theory [1] offers interpretation
 - Orbits become stochastic
 - EP transport is enhanced
 - NTM drive is weakened
 - Manifests itself as mode losing energy

$$\Delta_{pol}' = -\varepsilon^{3/2} \frac{\rho_{\theta i}^2 \beta_{\theta}}{w^3} \left(\frac{L_q}{L_p}\right)^2 + \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p}\right)^2 \left(\frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i}\right)$$

[1] Cai, Nucl. Fusion 56 126016 (2016)

Kick model is valid for three NSTX discharges with different $q(\psi)$



Modeling of EP / NTM interaction in NSTX (NSTX-U / Magnetic Fusion Science Meeting, September 13, 2021)

Kick Model [1] Suggests to Include Instabilities in EP Calculations

- EP dynamics can be affected by δB
 - Perturbation sources: Ripple, MHD...
 - EP follows magnetic field lines, hence affected by such perturbations
- ORBIT [2] code is used for calculation
 - Follow test particles
 - Accumulate ΔE and ΔP_{ξ} to evaluate wave particle resonance
 - Produce kick probability matrix

Podestà *et al.*, PPCF **56** 055063 (2014)
 White and Chance, PoF **27** 2455 (1984)
 Podestà *et al.*, PPCF **59** 095008 (2017)

Reproduced from Fig. A2 of [3]