Profound $E \times B$ shear-stabilized turbulence regime in NSTX plasma

G. Avdeeva, J.Candy

NSTX-U / Magnetic Fusion Science Meeting

Initial goals of this study

More detailed validation of the TGLF model* on NSTX plasmas, focusing on determining key parameters that influence the precision of TGLF in predicting plasma profiles as accurately as for conventional tokamaks.

* Trapped Gyro Landau Fluid (TGLF) model – fast, reduced turbulence model for the prediction of turbulent fluxes [Staebler G.M. et al., Phys. Plasmas 14, 2007]

Initial goals of this study

More detailed validation of the TGLF model^{*} on NSTX plasmas, focusing on determining key parameters that influence the precision of TGLF in predicting plasma profiles as accurately as for conventional tokamaks.

Understanding the extreme discrepancy between CGYRO^{**} simulations and power balance estimates as well as TGLF results on the NSTX case

* Trapped Gyro Landau Fluid (TGLF) model – fast, reduced turbulence model for the prediction of turbulent fluxes [Staebler G.M. et al., Phys. Plasmas 14, 2007] ** Eulerian gyrokinetic code specifically designed and optimized for collisional, electromagnetic, multiscale simulations [Candy J. et al., Comput. Phys. 73, 2016] NSTX-U / Magnetic Fusion Science Meeting

We focused on the NSTX L-mode discharge #141716 at t = 400 ms

NSTX-U / Magnetic Fusion Science Meeting

Plasma profiles correspond to Z79 TRANSP ID *

* Avdeeva G. et al., Nucl. Fusion 63, 2023

Initial simulations on experimental conditions revealed a big overprediction of fluxes

- Use TGLF SAT2^{*} model as one the latest and most accurate
- Results are similar for electrostatic and electromagnetic TGLF simulations
- TGLF significantly overpredicts fluxes at various radial locations; <u>such trend was observed for</u> <u>other NSTX shots</u>

Initial simulations on experimental conditions revealed a big overprediction of fluxes

- Use TGLF SAT2^{*} model as one the latest and most accurate
- Results are similar for electrostatic and electromagnetic TGLF simulations
- TGLF significantly overpredicts fluxes at various radial locations; <u>such trend was observed for other NSTX shots</u>
- As a result, temperature profiles are underestimated with a flux matching solver

Initial simulations on experimental conditions revealed a big overprediction of fluxes

- Use TGLF SAT2^{*} model as one the latest and most accurate
- Results are similar for electrostatic and electromagnetic TGLF simulations
- TGLF significantly overpredicts fluxes at various radial locations; <u>such trend was observed for other NSTX shots</u>
- As a result, temperature profiles are underestimated with a flux matching solver

Experiments vs model comparison – uncertainties might play a role Model (TGLF) vs model (CGYRO) comparison is better

CGYRO simulations shown even larger overprediction of fluxes

CGYRO simulations shown even larger overprediction of fluxes

Outline of the talk

- Simulation setup
- Gyrokinetic analysis
 - $\beta_{\rm e}$ effect
 - strong $E \times B$ shear stabilization
- TGLF simulations of $E \times B$ shear stabilization
- Summary

Simulations are based on experimental profiles at r/a = 0.7

NSTX - baseline case based on experimental profiles

NSTX ($\beta_e/4$) = 1/4 $\beta_{e,unit}$ of **NSTX** case

$$\beta_{e,\text{unit}} = 8\pi n_e T_e / B_{\text{unit}}^2$$

 $B_{\text{unit}}(r) = (q/r)(d\psi/dr)$

Parameter	Value	Parameter	Value
R_0/r	2.05	Δ	-0.34
q	2.38	s	2.48
κ	1.66	s_κ	0.05
δ	0.14	s_{δ}	0.17
$(a/c_s)\gamma_E$	0.22	$(a/c_s)\gamma_p$	-1.08
M_D	-0.28	T_i/T_e	0.95
$(a/c_s)\nu_{ee}$	0.79	$\beta_{e,\mathrm{unit}}$	0.194%
a/L_T	4.65	a/L_n	2.07

 $\beta_{\rm t}$ = 5.5 % - experimental, from EFIT results

Simulations setup

CGYRO numerical settings

- Pure deuterium plasma (z_{eff} = 1) with kinetic electrons
- Three electromagnetic fields are evolved (φ , $A_{||}$, $B_{||}$)
- Spatial resolution

$$\Delta(k_x^0 \rho_s) = 0.043, \ (k_x^0 \rho_s)_{\text{max}} = 6.87$$

 $\Delta(k_{\theta}\rho_s) = 0.05, \ (k_{\theta}\rho_s)_{\text{max}} = 1.55$

 Long simulation time to ensure a good convergence

Linear analysis with new CGYRO-DMD solver shows unstable modes which drive the transport

- MTMs are unstable and stabilized by β
- ITG is the main transport driving mode and slightly stabilized by β
- ETG is not sensitive to β

With decrease of β_e fluxes are much lower, but still well above the power balance

	NSTX	NSTX (β _e /4)	Power balance
$Q_{e/}Q_{GB}$	328	286	21
Q _{i/} Q _{GB}	1285	219	4.5

- Contribution of magnetic fluctuations is negligible in both cases
- β_e destabilization effect can not be explained by the linear physics ($\gamma^{max} = 0.66$, $\gamma^{max} = 0.63$)

Increase of $E \times B$ shear brings fluxes in a good agreement with the power balance level

$$\gamma_E \doteq -\frac{r}{q} \frac{d\omega_0}{dr}$$

Waltz ExB shearing rate

 Increase of the shear by 50% brings electron flux in the excellent agreement with the power balance

Increase of $E \times B$ shear brings fluxes in a good agreement with the power balance level

$$\gamma_E \doteq -\frac{r}{q} \frac{d\omega_0}{dr}$$

7

Waltz ExB shearing rate

- Increase of the shear by 50% brings electron flux in the excellent agreement with the power balance
- <u>Such rate of $E \times B$ shear</u> <u>suppression is surprisingly strong</u>

Transition from ITG regime to a multiscale is observed with increase of ExB shear

TGLF does not reproduce this $E \times B$ dependency

- TGLF results are similar for the NSTX and NSTX ($\beta_{\rm e}/4$) cases
- TGLF applies the spectral shift model^{*} to include the effect of E × B shear suppression on turbulent fluxes
- Surprisingly TGLF does not show any significant decrease of the flux with increase of $\gamma_{\rm E}$ for this NSTX case
- * [Staebler G., et al., Nuclear Fusion 53, 2013]

The NSTX case is very different from the calibration database of the TGLF SAT2 model

• TGLF reproduces $E \times B$ shear dependency accurately for the GASTD case

^{* [}Staebler G., et al., Nuclear Fusion 61, 2021]

The NSTX case is very different from the calibration database of the TGLF SAT2 model

- TGLF reproduces $E \times B$ shear dependency accurately for the GASTD case
 - 10^{3} 16 region we Q_e/Q_{GB} 14 TGLF analyzed for Electron Energy Flux 9 8 01 NSTX 10 **CGYRO** 10 $O_i/Q_{GB}^{O_{B}}$ 2 GASTD 10^{1} GASTD Ref.[*] 0 TGLF NSTX 0.3 0.1 0.2 0.4 0.5 0 10^{0} 0.21VEXB SHEAR 0.24 0.27 0.30 0.33 $(a/c_s)\gamma_E$

* [Staebler G., et al., Nuclear Fusion 61, 2021]

TGLF reproduces the same $E \times B$ shear dependency

for NSTX case as for GASTD case

- NSTX L-mode discharge #141716 shows a very strong $E \times B$ shear dependency around experimental value of $\gamma_{\rm E}$
- This dependency can not be reproduced by the TGLF model as it is much stronger compared to the one observed for the conventional tokamak parameters

- NSTX L-mode discharge #141716 shows a very strong $E \times B$ shear dependency around experimental value of $\gamma_{\rm E}$
- This dependency can not be reproduced by the TGLF model as it is much stronger compared to the one observed for the conventional tokamak parameters
- NSTX baseline case illustrates the difference of nonlinear physics of spherical tokamak confinement regimes compared to the conventional tokamaks and provides a useful dataset for reduced model development

Future work

- Publication of results + analysis of the accuracy of the TGLF model for parameters corresponding to ST; in particular, the effect of small aspect ratio
- Understanding which parameter causes such a strong $E \times B$ shear suppression for ST plasmas

GA codes rotation theory

The rotation profile

The relevant profile that gives a *complete specification of rotation* is the angular frequency $\omega_0(r)$, which in defined consistently throughout GACODE as

$$\omega_0(r) \longrightarrow rac{c E_r}{R B_p} \; .$$

$$E_r = rac{RB_p}{n_a z_a e} rac{dp_a}{d\psi} + rac{U_arphi}{c} B_p - rac{U_ heta}{c} B_t \ . \qquad \qquad E_r = -|
abla r| d\Phi/dr$$

$$\omega_0(\psi)\doteq -crac{d\Phi_{-1}}{d\psi}\;.$$

Energy flux calculations in TRANSP

$$S_{e} = \nabla \Gamma_{e} = P_{\text{OH}} + P_{\text{NBI}} - P_{\text{rad}} - P_{\text{ioniz}} - P_{ei} - \frac{3}{2} d(n_{e}T_{e}) / dt$$

NSTX-U / Magnetic Fusion Science Meeting

Linear sensitivity scan

