

XP: ELM stability dependence on edge current, q, and collisionality (from XP1031)

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL **PPPL** PSI Princeton U Purdue U Sandia NL Think Tank, Inc.

UC Davis

UC Irvine

U Colorado

U Marvland

U Rochester

U Wisconsin

U Washington

UCLA

UCSD

S.A. Sabbagh¹, T.E. Evans², L.E. Zakharov³, J-W. Ahn⁴, J.W. Berkery¹, J. Canik⁴, R. Maingi⁴, J.M. Bialek¹, S. Gerhardt³, J-K. Park³, Y-S. Park¹, H. Takahashi³, K. Tritz⁵, et al.

¹Department of Applied Physics, Columbia University

²General Atomics

³Princeton Plasma Physics Laboratory

⁴Oak Ridge National Laboratory

⁵Johns Hopkins University

NSTX Research Forum FY11-12

March 17th, 2011

PPPL

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Culham Sci Ctr

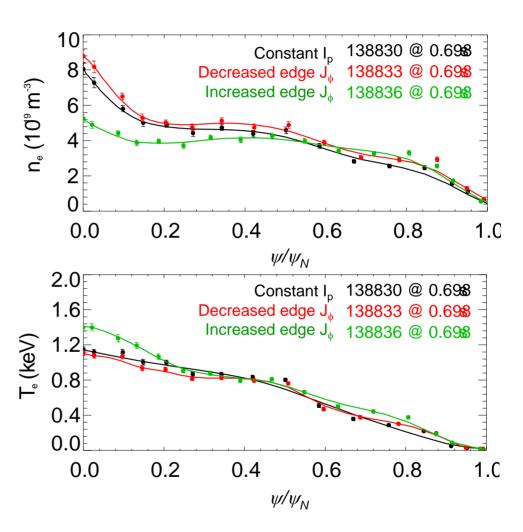
Goal: complete scans of XP1031 that varied thermoelectric current, edge J and q, stopped short of v

- Last year XP1031 Goals/Approach
 - Test expectations ELM stability theory considering changes to edge toroidal current density, field-aligned thermoelectric current, and collisionality
 - 1) Generate target
 - 2) Vary TE current connection length at fixed 3D field (Vary x-point height; DRSEP)
 - 3) Vary 3D field amplitude (not done)
 - 4) Vary toroidal current density near the edge
 - 5) Vary collisionality with LLD (not done)
- Proposal: complete this experiment, pursue interesting findings
 - Ran full shot list except reduced v issues/interests
 - 2) Vary TE current connection length at fixed 3D field (Vary x-point height; DRSEP)
 - X-point height / DRSEP scan: X-point height varied during scan: much better control now
 - => RUN a (3 pt / 4 pt) X-point height / DRSEP scan with good x-point height control
 - □ => <u>Vary 3D field amplitude</u> in two steps during this scan does ELM character/stability change vs. X-point height and 3D field Request: 0.5 run days in FY11
 - 4) Vary toroidal current density near the edge
 - ELM mitigation found when positive edge current applied (constant B,)
 - □ => Pursue this finding: (i) reproduce it, (ii) greater variation of q with I_p (and/or B_t) ramps
- R(12-3) milestone 5) Vary collisionality: A FY2010 pursuit to determine effect of collisionality on stability − e.g. effect of v on thermoelectric current Request: 0.5 run days in FY12

support

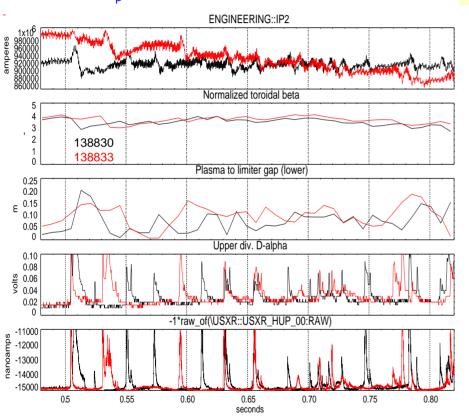
support

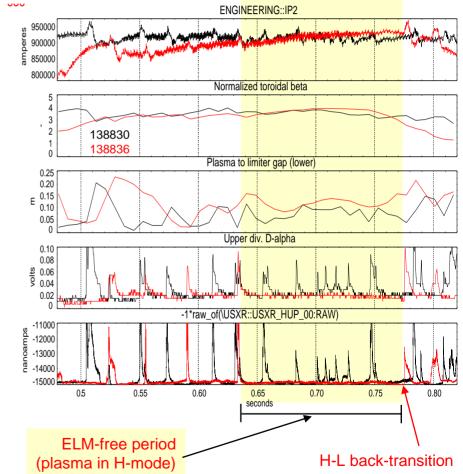
R(11-4) milestone


Backup slides – Data from XP1031

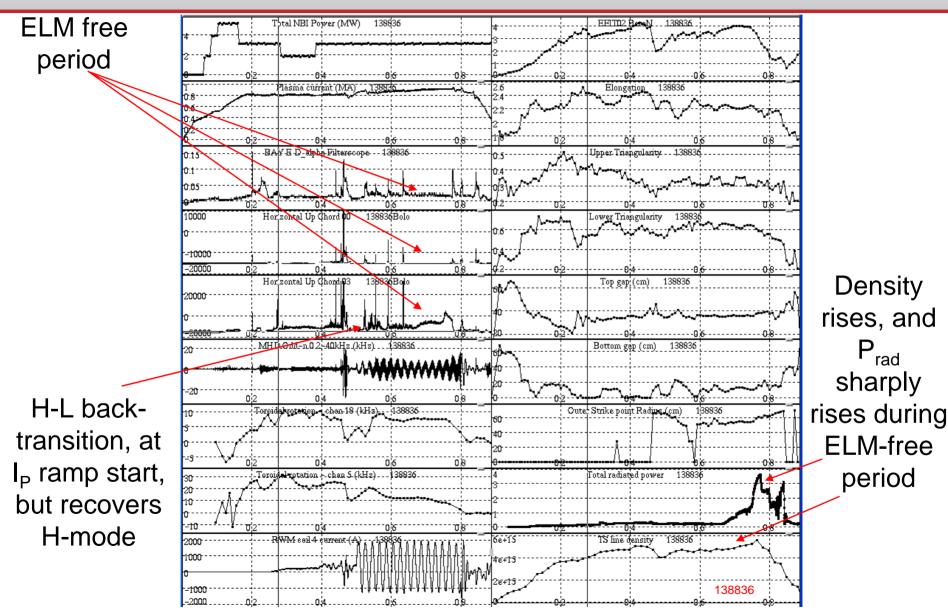
XP1031 medium triangularity target and kinetic profiles for toroidal edge current scan

Medium triangularity target




Profile comparison (n_e, T_e vs. ψ_N) for shots with edge current changed

XP1031: ELM stabilization with positive current ramp + 3D field during ELMing phase in medium triangularity plasma


Constant I and decrease edge J: similar ELMing

Constant In and increase edge J: ELM-free period found

H-mode terminates in ELM-free discharge from P_{rad} increase

Latest XP1031 run yielded different ELM stabilization results – analysis continues to determine key physics differences...

- □ Initial run: **medium triangularity target** with 3D fields applied ($\kappa = 2.2$, $q_{95} = 8.4$)
 - Did not stabilize ELMs with negative current ramp
 - Stabilized ELMs with positive current ramp
- □ Recent run: **fiducial target** with 3D fields applied ($\kappa = 2.35$, $q_{95} = 9.6$)
 - Needed to switch target plasma
 - Medium triangularity target was further developed with better control (FAR BETTER X-point height control); was not controlled on the run day (issue w/outer strike point crossing CHI gap)
 - Did not stabilize ELMs with negative OR positive current ramp
 - Due to higher triangularity target, different q profile (resonance effect)?
 - Due to stronger n=3 field compared to ELM stabilized shot from initial run?
- Recent run: lower kappa target without 3D fields applied (R. Maingi)
 - □ Did not stabilize ELMs with negative OR positive current ramp ($\kappa = 1.9$, $q_{95} = 8.2$)