

Snowflake divertor configuration control and scenario development

Coll of Wm & Mary

Columbia U CompX

General Atomics

FIU INL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Lehigh U

Nova Photonics

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank. Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

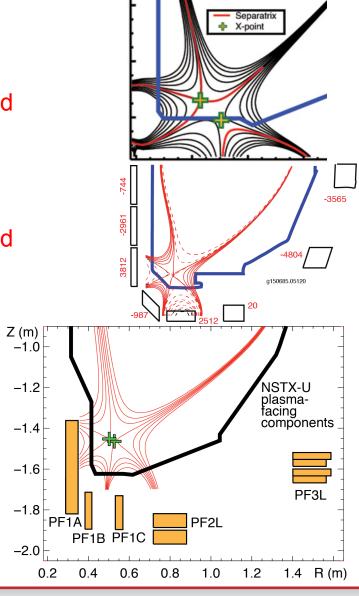
U Wisconsin

X Science LLC

Vlad Soukhanovskii

and the NSTX Research Team

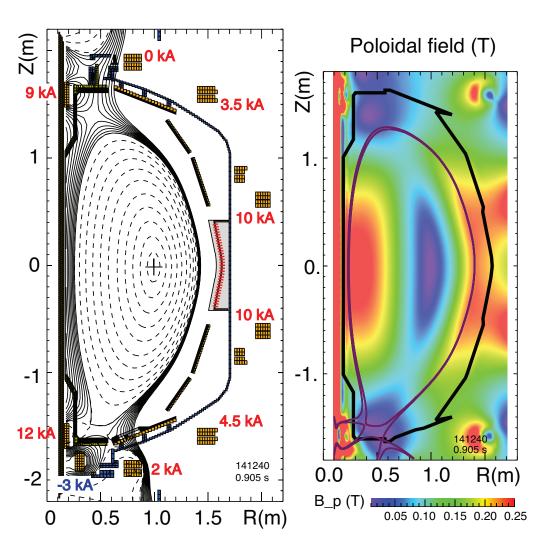
NSTX-U FY2015 Research Forum Princeton, NJ **24 February 2015**

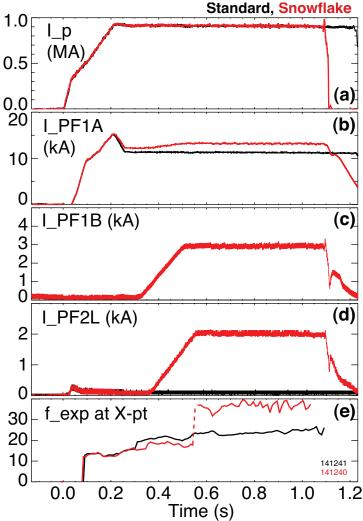

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U Tokvo** JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching

ASCR, Czech Rep

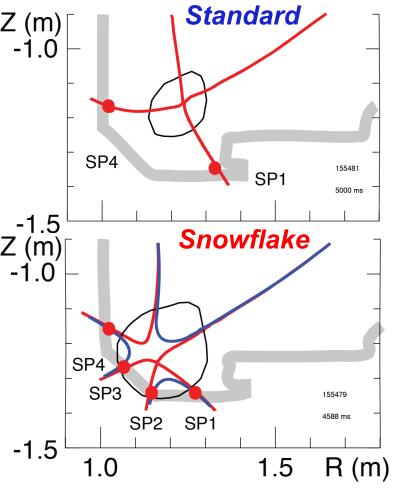
Snowflake divertor is a leading candidate for divertor heat flux mitigation in NSTX-U

- Status of snowflake control
 - NSTX (2009-2010)
 - Strike point PCS control + pre-programmed PF1B
 - Pre-programmed PF1A, PF1B, PF2L
 - DIII-D (2012-2014)
 - Strike point PCS control + pre-programmed coild currents
 - Initial work on feedback-controlled d_{xx} , θ_{xx}
 - TCV (2009-2014)
 - Pre-programmed coil currents
 - NSTX-U
 - New coil layout
 - Near-term coils: PF1A, PF1C, PF2L
 - Longer term- up-down snowflake

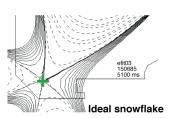


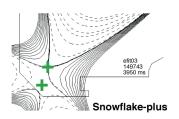

Two-pronged approach to snowflake control is proposed to enable initial data in FY15 and timely development for R16-1

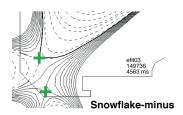
- Obtain SF configurations with pre-programmed currents (submitted Enabling/Cross-cutting XP)
 - Use gap control initially, then X-point or SP control from PCS
 - Verify coil current targets from ISOLVER models
 - Verify vertical stability, configuration stability beyond 0.5 s, etc
- 2. In parallel, start developing PCS feedback control of snowflake-plus and snowflake-minus
 - 1) Implement Makowski null-point tracker
 - 2) Develop and implement null-point seniority (what is the primary null, what is the secondary null)
 - 3) Implement inter-null distance control
 - Keep null-point orientation fixed at 45 or 45 degrees corresponding to snowflake-plus and snowflake-minus.
 - Exact snowflake will be obtained in the asymptotic limit of inter-null distance ->0 (as limited by PCS spatial grid resolution)


Snowflake-minus divertor configurations obtained with existing divertor coils in NSTX, maintained for up to 10 $\tau_{\rm E}$

Large Region of Low B_p Around Second-order Null in Snowflake Divertor is Predicted to Modify Power Exhaust

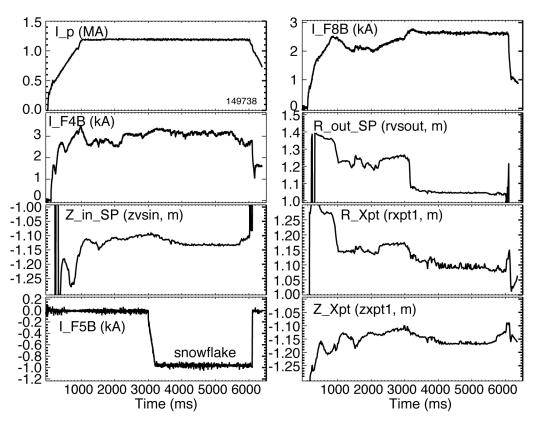


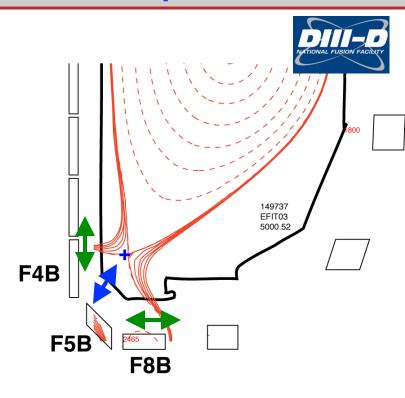

Low B_p contour: 0.1 B_p/B_p^{mid}


• Geometry properties Criterion: $d_{XX} \le a (\lambda_q / a)^{1/3}$

- Higher edge magnetic shear
- Larger plasma wetted-area A_{wet} (f_{exp})
- Larger parallel connection length L_{II}
- Larger effective divertor volume V_{div}
- Transport properties
 Criterion: d_{XX} ≤ D*~a (a β_{pm} / R)^{1/3}
 - High convection zone with radius D*
 - Power sharing over four strike points
 - Enhanced radial transport (larger λ_a)

"Laboratory for divertor physics"





Snowflake configurations obtained in DIII-D from the standard divertor using an algorithm developed at NSTX

- Grad-Shafranov equilibria modeling of possible configurations
- Inner and outer strike point positions controlled by PCS using F4B and F8B coils
- Secondary null-point formed and pushed in using F5B

