Comparative Study
of the Electro-magnetic torque
application through feedback
for
NTM locking avoidance
in DIII-D, RFX-mod and NSTX

M. Okabaayshi (PPPL) , Jong-Kyu Park(PPPL)
 T. Strait (GA), R. LaHaye(GA),
 P. Zanca (RFX-mod), R. Paccagnella(RFX-mod),

NSTX-U Research Forum 2015February 24-27, 2015 Princeton Plasma Physics Laboratory

Developing for ITER Locking and disruption avoidance by EM torque Feedback Control

Approach:

-DIII-D and RFX-mod carried out: a proof of principle experiments

"Avoidance of NTM locking and disruptions by the electromagnetic torque (EMT) injection by feedback."

Goal in NSTX:

- To demonstrate the versatility of this approach
 by comparing in vastly different environments in three devices
 "aspect ratio, plasma shape, different EFC,
 ulta-low q ohmic, high betan, q-profile,..."
- Extremely productive for developing a better tool for ITER

Electromagnetic Torque Avoids Disruption by Forcing Locked-mode to Rotate

• An example: mode locking occurs with ultra-low q~2 in RFX-mod tokamak

The Electromagnetic Torque injection by feedback Avoids TM locking in DIII-D and RFX-mod

Cia 1

To explore the versatility of EM torque injection approach by feedback

NSTX-U	DIII-D	RFX-mod
D shaped	D-shaped	Circular
R/a=1.7	R/a=2.8	R/a=4.5
shell τ = 5 ms	$\tau = 2ms$	$\tau = 100 \text{ ms}$
3D-coil outside V.V	inside/outside	outside
n=1,2	n=1	n=1
high beta	high betaN	ultra-low q ohmic

Supplement

Plasma Condition and Hardware are Vastly Different

RFX-Mod	DIII-D
2.0 m	1.69 m
0.46 m	0.6 m
circular	D-shape
ohmic	NBI
q _{edge} ~2.2	4.0-4.5
ultra-low-q	high βn

T w
-Resistive shell
-vacuum vessel
• Feedback bandwidth: τь
Feedback coils

• Recistive time.

$\tau_{\rm w}/\tau_{\rm b}$ >>1 (Thick shell)	$\tau_{\rm w}/\tau_{\rm b}$ <<1 (Thin shell)
50 ms (Vert. Field penetration)	None
3 ms	2-2.5 ms
~ 4 ms (latency, power sp.)	10-40 ms (feedback pre-set)
Outside the shell	Inside shell

DIIID results also is in a Good Agreement with the Analytical Model ($\tau_{\rm w}/\tau_{\rm p}$ <<1 regime)

Parameters for analytical model

T_p: band-pass by FB setting: 10ms

 T_w : RWM suggested (2-2.5ms)

 α : = 1/(1+ τ_p/τ_w), $\tau_w/\tau_p \sim 0.2-0.3$

 ϕ_0 : phase shift set 30°

 Observation is qualitatively in a good agreement with model prediction.

However, The observed frequency is somewhat higher than predicted

with $\tau_{\rm w}$ = 2 ms. There are several possible causes.

- the waveform distortion with lower gain may require additional eignvalues of the wall eddy currents.
- Since the performance below $G_{crit} = 0.2-0.3$, where the phase shift is critical, has not been explored yet, the impact of phase shift remains to be studied.

Gain Threshold is Consistent with Analytical Model $(\tau_w/\tau_p > 1 \text{ regime: RFX-mod})$.

Parameters for analytical model

 τ_p : band-pass constant = 4ms

- latency (1 ms)
- coil impedance (3ms)

τ_w: 100ms

a: Calculated with large aspect ratio cylindrical model

 $(\phi_0$: no phase shift)

