

Supported by

XP1031: MHD/ELM stability dependence on thermoelectric current, edge J, v - Update

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

V1.0

S.A. Sabbagh¹, T.E. Evans², L.E. Zakharov³, J-W. Ahn⁴, J. Canik⁴, R. Maingi⁴, J.W. Berkery¹, J.M. Bialek¹, S. Gerhardt³, J-K. Park³, Y-S. Park¹, H. Takahashi³, K. Tritz⁵, et al.

¹Department of Applied Physics, Columbia University ²General Atomics ³Princeton Plasma Physics Laboratory ⁴Oak Ridge National Laboratory ⁵Johns Hopkins University

> NSTX Results / Theory Review December 1st, 2010

> > PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

XP1031 MHD/ELM stability dependence on thermoelectric current, edge J, v

Goals/Approach

- Test expectations ELM stability theory considering changes to edge toroidal current density, field-aligned thermoelectric current, and collisionality
 - 1) Generate target
 - 2) Vary TE current connection length at fixed 3D field (Vary x-point height; DRSEP)
 - 3) Vary 3D field amplitude
 - 4) Vary toroidal current density near the edge
 - 5) Vary collisionality with LLD

Present data

- Ran full shot list except reduced v
 - X-point height and DRSEP varied separately (tricky for operators early on)
 - □ ELMs change with variation to be analyzed
 - Target reproduced with ELMs induced by 3D field
 - 50 Hz n = 3 field mostly used in med. δ target, DC field used more in fiducial target
 - Scrape-off layer current detail measured by LLD shunt tiles / Langmuir probe arrays
 - \square e.g. n = 1 clearly seen during initial part of ELM, changing to n = even
 - ELM stabilization when positive edge current applied (constant B_t)

One XP1031 scan examined the effect of toroidal edge current change on ELM stability

3

XP1031: ELM stabilization with positive current ramp + 3D field during ELMing phase in medium triangularity plasma

OD

H-mode terminates in ELM-free discharge from P_{rad} increase

Latest XP1031 run yielded different ELM stabilization results – analysis continues to determine key physics differences...

- □ Initial run: medium triangularity target with 3D fields applied (κ = 2.2, q₉₅ = 8.4)
 - Did not stabilize ELMs with negative current ramp
 - Stabilized ELMs with negative current ramp
- **Recent run: fiducial target** with 3D fields applied ($\kappa = 2.35$, $q_{95} = 9.6$)
 - Needed to switch target plasma
 - Medium triangularity target was further developed with better control (FAR BETTER X-point height control); was not controlled on the run day (issue w/outer strike point crossing CHI gap)
 - Did not stabilize ELMs with negative OR positive current ramp
 - Due to higher triangularity target, different q profile (resonance effect)?
 - Due to stronger n=3 field compared to ELM stabilized shot from initial run?
- Recent run: lower kappa target without 3D fields applied (R. Maingi)
 - Did not stabilize ELMs with negative OR positive current ramp ($\kappa = 1.9$, $q_{95} = 8.2$)
- Future Analysis
 - □ Examine key differences between target plasmas run
 - Examine
 - Variations of stability of baseline target configurations
 - Variations due to change of TE current (X-point height, DRSEP)
 - Variations due to change of edge toroidal current density