

Recent Results and Plans for the Pegasus ST Experiment

R. Fonck for the Pegasus Team

Dept. of Engineering Physics
University of Wisconsin
STCC Meeting, PPPL
February 9, 2009

R.J. Fonck

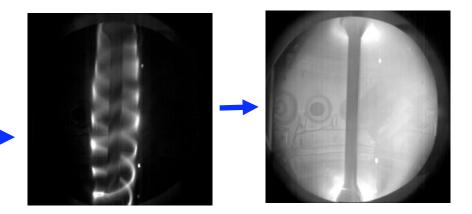
D.J. Battaglia

A.J. Redd

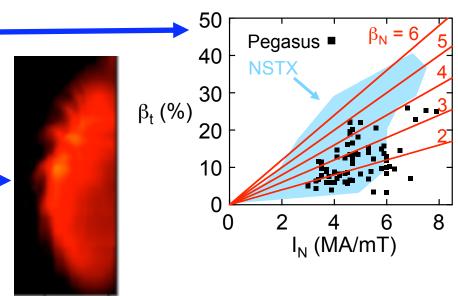
M.W. Bongard

B.A. Kujak-Ford

E.T. Hinson


B.T. Lewicki

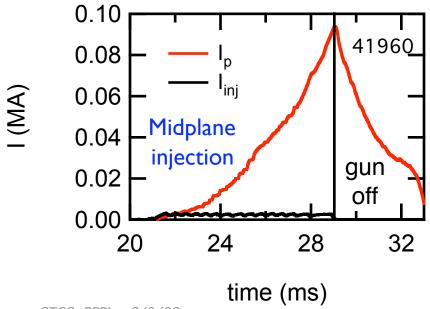
G.R. Winz

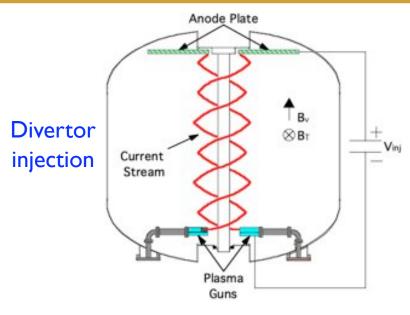


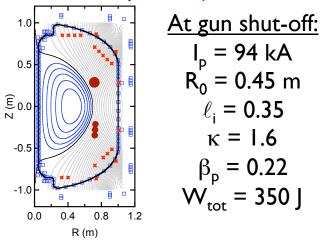
PEGASUS is studying MHD at low aspect ratio & developing non-solenoidal startup techniques

- Non-inductive startup via point current sources
 - Non-solendoidal startup and rampup is critical for STs (FESAC TAP report)
 - DC helicity injection
 - Coupled to outer-PF induction and Ohmic drive

- Determining limits to I_N , β_t
 - High I_N , β_t accessed through j(R) manipulation, fast TF ramps
 - Tokamak-spheromak overlap
- Edge filamentary structures observed
 - Peeling modes?
 - Possibly due to high $(j_{\parallel}/B)_{edge}$
- Planned PEGASUS activities

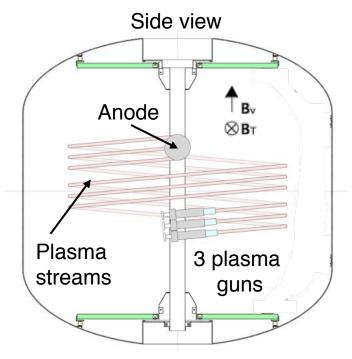


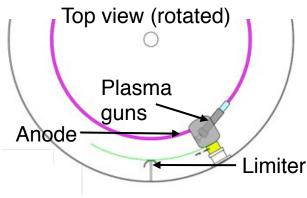


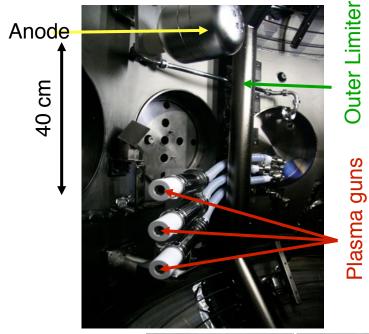

Point-Source DC Helicity Injection May Provide Viable Non-Solenoidal Startup Technique

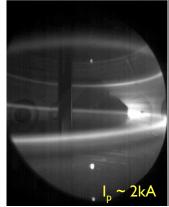
- Plasma guns provide localized, pointcurrent source at plasma edge
- Technique appears to be flexible & scalable to larger currents & devices
- Up to 0.1 MA plasma current to date

Midplane injection

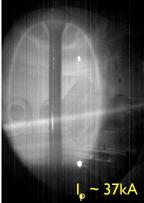



$I_D = 94 \text{ kA}$ $R_0 = 0.45 \text{ m}$ $\ell_{\rm i} = 0.35$ $\kappa = 1.6$ $\beta_{D} = 0.22$ $W_{tot} = 350 J$



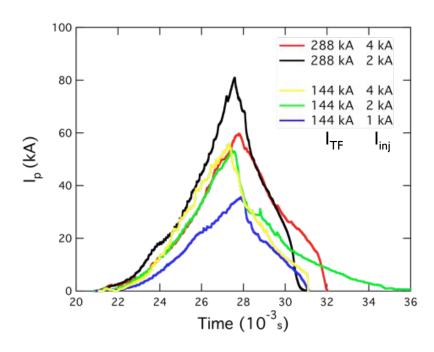


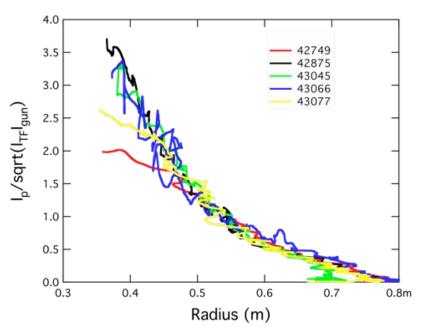
Outboard gun system ≈ "port-plug" design for point-source injection



Gun-driven Phase

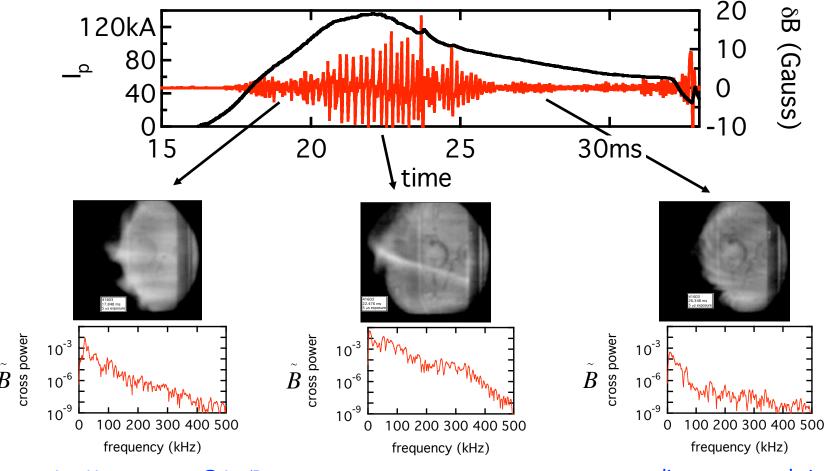
Post-gun Decay Pegasus Toroidal Experiment




Recent Experiments Beginning to Test Simple Model for Maximum Ip

Relaxation limit suggests:

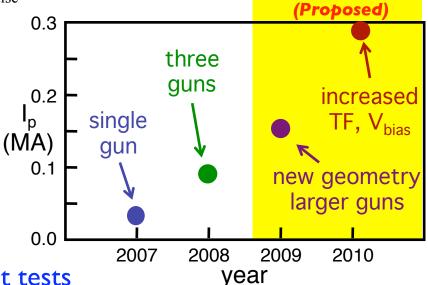
$$I_{p} \leq \left[\frac{C_{p}}{2\pi R_{inj}\mu_{0}} \frac{\Psi I_{inj}}{w}\right]^{1/2} \sim \sqrt{I_{inj}I_{TF}}$$


- Vary I_{gun}, I_{TF} under ~ constant conditions
 - Max I_p scales as expected, provided sufficient helicity input available

Coherent Edge Fluctuations Have Strong Electromagnetic Component

- peeling-like structures @ hi j/B
- Spatial coherence 50-150 kHz
- observed only w/probe at plasma edge
- large 2/1 TM dominates
- visible distortion of edge
- seen on all Mirnovs

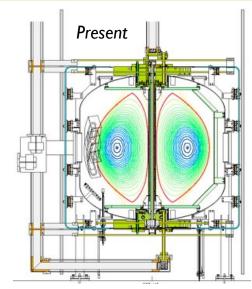
- peeling suppressed via l_p rampdown?
- Intermittant turbulent banding; mostly electrostatic

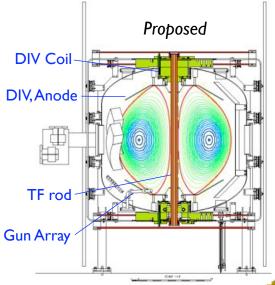


Proposed Pegasus Research Program: Address Several Areas of ST Focus

- Non-solenoidal startup & growth via HI, current sources
 - Model for scaling point source injection startup to larger scale
 - Combine w/CHI concepts to optimize I_p
 - Extend non-solenoid startup to ~0.3MA
 - Couple to growth, sustainment; target = $t_{pulse} \sim 200 + \text{ ms}$
 - HI, HHFW, PF, bootstrap, EBW(?)
 - Develop technically robust approach
 - *Deploy to NSTX in future*

- Edge $j(\psi)$, $P(\psi)$ profiles via probes
- Add separatrix for local shear & H-mode


- Coupled HI-OH CD for high I_N , β_t limit tests
 - Achieve high I_p/I_{TF} with broad j(r) at $I_p \ge 0.15$ MA
- Use plasmas for Li Divertor test concepts?



Proposed Future Program: Modest Facility Modifications

- Magnetic and power systems reconfiguration
 - Remove OH solenoid; new TF rod assembly
 - Increase TF x 5 $(B_t \sim 0.64T)$
 - Larger Divertor coils
 - Reconfigure for <u>longer pulse operation</u>
- Flexible Helicity Injection system
 - New high-voltage boost power supplies
 - Integrated plasma gun test/development facility
- Sufficient core and edge Diagnostics
 - Multi-point Thomson scattering
 - Edge current and fluctuation probes
 - Insertable gun diagnostic station
 - (Future) DNB/CHERS for $T_i(r)$ and J(r)

Pegasus Contributes to the National ST Science Program

- Exploration of high I_N , β_t in tokamak-spheromak space facilitated by j(r) tools
 - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , N_e for high β_t
- Helicity injection startup and growth development
 - $I_p \sim 0.1$ MA achieved with simple outboard midplane 3-gun array
 - Goal: ~0.3 MA non-solenoidal target & hand-off to RF heating & growth
- Edge instabilities, especially at high j_{edge}/B
- Future contributions proposed
 - Optimized HI concepts for large facility deployment
 - Startup and growth to NB target plasmas
 - Detailed tests of Peeling-ballooning theory
 - Fully nonsolenoidal operation
 - Concept tests for next generation: Li divertor, etc?

Reprints at: http://pegasus.ep.wisc.edu/Technical_Reports

Achieved I_p depends on helicity, relaxation, and tokamak constraints

Helicity balance in a tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, d^{3}x - 2\frac{\partial \psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot d\mathbf{s} \quad \Longrightarrow \quad I_{p} \leq \frac{A_{p}}{2\pi R_{0} \langle \eta \rangle} \Big(V_{ind} + V_{eff} \Big)$$

• I_p limit depends on the scaling of plasma confinement via the η term

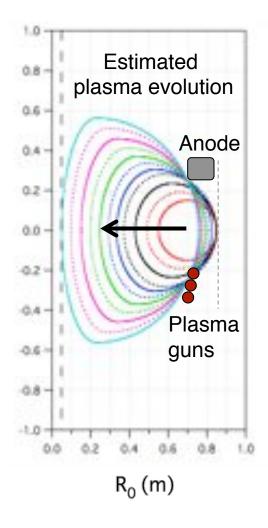
$$V_{eff} = \frac{N_{inj} A_{inj} B_{\phi, inj}}{\Psi} V_{bias}$$

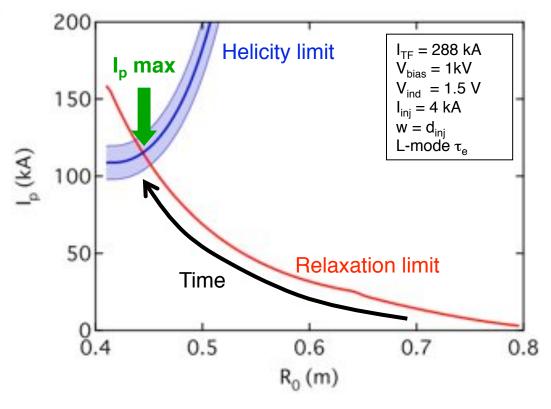
Requirement from Taylor relaxation:

$$\frac{\mu_{0} j}{B} = \lambda_{p} \leq \lambda_{edge} \longrightarrow \frac{\mu_{0} I_{p}}{\Psi} \leq \frac{\mu_{0} I_{inj}}{2\pi R_{inj} w B_{\theta, inj}} \longrightarrow I_{p} \leq \left| \frac{C_{p}}{2\pi R_{inj} \mu_{0}} \frac{\Psi I_{inj}}{w} \right|^{1/2}$$

- Assumes edge current mixes uniformly in SOL
- Edge fields average to tokamak-like structure

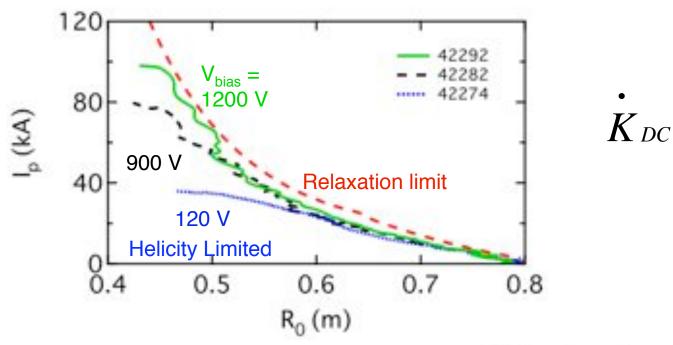
Radial force balance. Overall stability (e.g., $q \ge 3$) A_n Plasma area


C_p Plasma circumference

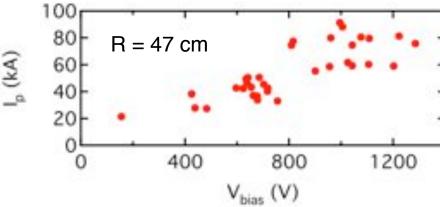

Ψ Plasma toroidal flux

w SOL width

Maximum possible I_p reached when helicity and relaxation criteria are satisfied simultaneously

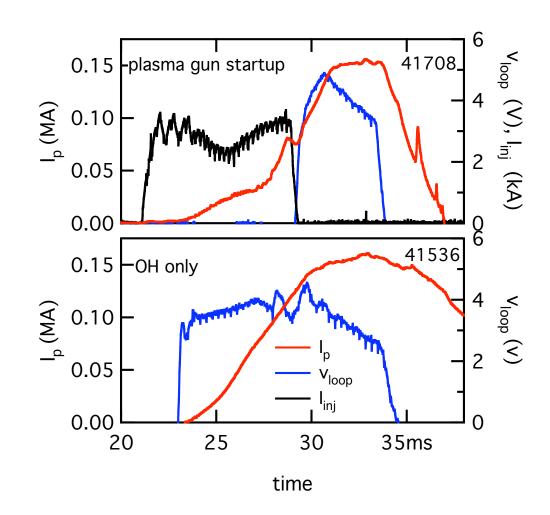


- Radial force balance requires an outer-PF ramp
- Total "loop voltage" from relaxation and PF ramp



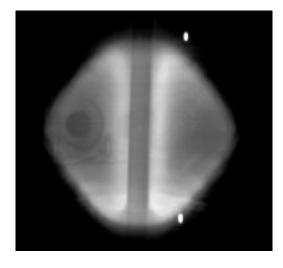
Sufficient helicity injection is required to drive plasma to the relaxation limit

 $\dot{K}_{DC} \propto V_{bias} \propto Z_{inj}$


• I_p increases with V_{bias}, helicity injection rate:

Plasma Gun Startup Provides Robust Target Plasma

- 3-gun target then OH drive
 - pre-OH plasma ~80 kA
- Equivalent I_p with I/2 OH flux swing
 - $\sim 50\%$ flux savings
- Need to assess target suitability for other CD means



Edge Filaments Observed in Most Discharges

- Localized to edge
 - large tearing modes also observed which cause entire plasma to wobble
- Appear early in discharge & exist throughout shot
 - individual modes last less than 100 µs
- Uncorrelated with I_p saturation
- Can be delayed by manipulating size and/or shape?

Larger Startup - sharp edge

Smaller Startup - strong filaments

