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NSTX-U! Phys. Ops. Course – Start-up 7-21-15!

Physics of tokamak plasma start-up 

•  Central solenoid inductive start-up and current ramp 
–  Breakdown/avalanche 
–  Impurity burn-through 
–  Electron cyclotron radio-frequency assist 
–  Examples from  EAST, KSTAR, NSTX 
–  Early stage of plasma current ramp-up 
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Inductive start-up can be divided into three phases, break-
down/avalanche, burn-through and controlled ramp-up 

 Break-down, Te < 10 eV, j < 35 
kA/m2, Ip(NSTX)< 35 kA 
 Burn-through, 10 eV < Te < 100 
eV, 30 kA/m2  < j < 300 kA/m2  
 Controlled ramp-up Ip > 100 kA 

•  Central solenoid provides voltage 
•  Resistive heating or auxiliary 

power to heat and ionize low Z 
impurities 

•  Vertical field to control plasma 
radius 

•  Other Poloidal Field coils - 
shaping 

•  Gas puffing for fueling 

NSTX!

Time (s)!
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Inductive start-up 
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•  The central solenoid is supplied with a current in the desired 
direction of the plasma current before t0 

•  At t0, the current is reduced towards zero by action of power 
supplies (assisted by IR drop) 
–  Resistance of coil or for superconducting coils by a resistor inserted into 

the circuit 
 

€ 

Vcoil =Vps − IcoilRcoil+

Vloop =VcoilM /L
E =Vloop /2πR

Free electrons are always present, but can be supplemented by ECH, radiation, 
heated filaments, etc."

E

B

B

Leakage field"
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Breakdown in a gas, the Townsend avalanche 
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From S.C. Brown, Intro. To  Electrical Discharges in 
Gases, John Wiley and Sons, 1966."•  Ionization cross-section peaks at about 

50 eV and falls at high  energy"
From http://physics.nist.gov/cgi-bin/Ionization/ion_data.php?id=HI&ision=I&initial=&total=Y"

€ 

F = m
dv
dt

= qE

⇒ vimpact =
q
m
Et

0

τcoll

=
qE
mnσv

τ coll =1/nσv;σ ionization cross sec tion
mean free path λ =1/nσ
1
2
mvimpact

2 = qEλ ≥13.6eV (Hydrogen)

•   For parallel plate electrodes 
 

 
 

•  If an electron produces α new 
electrons per meter then 

•  dne = α ne dx 
•  ne = ne (0) eαx 

•  α is  called the first Townsend 
coefficient 
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The voltage required for an avalanche depends upon the 
pressure distance product 
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R. Papoular, Nuclear Fusion 16 (1976) 37."

The Paschen curve"
(from http://ja.wikipedia.org/wiki/ファイル:Paschen_Curves.PNG"
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• For NSTX, p  ~ 5x 10-5 Torr   and   Vl  ~ 2 V/turn"
− For NSTX then α ~   10-2 /m"

• Connection length must be > 100 m, many toroidal transits"
• For E/p > 5X103 V m-1 Torr-1, Te is high enough that thermal ionization is 
important"
• This limits Te to about 10 eV until ionization of the initial gas is nearly complete"
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Electrons must travel many ionization lengths before being 
lost if an avalanche is to occur 

•  Parallel losses 
•  The stray field connection length, L ~  h BT/<δBz> 

h is the height of the machine <δBz>  is the 
average transverse field  
−  For NSTX B ~ 4 kG, h ~ 2 m 
−   <δBz> ~ 2.5 to 5.0 G 
−   L ~ 3000 m 

•   The electron drift velocity, vde parallel to  the field 
lines is approximately 35 E/p (m/s) 
−   Time to drift to wall ~ 6 ms 
−  For ions, vdi = 0.9E/p, the time to drift to the 

wall ~ 150 ms 
−  Secondary emission is unimportant 

•  Lloyd estimates the time to complete the 
avalanche process as 41/vde(α - L-1) 
−   ~ 7 ms  

7 

Field null at start-up in NSTX, includes eddy currents"
Similar plots can  be  made for  every tokamak"

2.7!

8.9!

8.9!

15.2!

58.9!

15.2!

58.9!

Lloyd et al., Nuclear Fusion, Vol.31. No.ll (1991)"
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Other losses that might stop avalanche from proceeding 
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•  If pressure is too low there will not be enough neutrals to 
provide electrons for the avalanche to continue 

•  Guiding center drift velocity 
–  vD = (1/2v⊥2 + v||

2)/Rωce  ; v⊥2 ~ v||
2 ~ 3KTe/2m 

–   vD ~ 4 to 40 m/s 
–  Loss time ~ 25 -250 ms  > avalanche time 

•  Taken together for a wide  range of devices 
–  VL = 2 to 30 V/turn, E = 0.3 to 2 V/m, with stray fields Bz/BT ~ 10-3 

over much of the vessel 
–  p = 1-10 x 10-5 Torr 
–  E/p = .4 to 3 X 104 V m-1 Torr-1 

–  Time for avalanche to occur ~ 2 - 50 ms 
–  JET found E • BT/dBz > 103 V/m !
             A. Tanga, et al.in “Tokamak Start-up” H. Knoepfel. Plenum Press, NY (1985)!
–  Consistent with NSTX and DIII-D!

I.H.Hutchinson, J.D.Strachan Nucl. Fusion 14 649(1974) "
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Avalanche proceeds until electron-ion collisions are the 
dominate  process compared to electron-neutral collisions 

•  Electron-neutral and electron-ion collision rates equal  when ne ~ 0.1 n0 

•  Current density is j = γ n0 e vd where γ is the H or D ionization fraction 
–   j ~  15-40 kA m-2 
–   Ip ~ 5 - 10 kA for NSTX, ~ 20 kA for JET 
−  For Ip= 10 kA a = 0.5 m, poloidal field µ0Ip/2πa ~ 40 G 

− Comparable to stray fields 
−  At end of avalanche phase, γ ~ 0.5, Coulomb collisions dominate j ~ 160 kA 

m-2 this  agrees with Ip ~ 200-400  kA at end of avalanche for JET 
•  Until ionization is nearly complete, Te is limited below 10 eV 
•  Later Te can be limited by low Z impurity radiation to < 100 eV until the 

impurities are ionized (latter phase is called burn-through) 
−  Burn-through can be a sticking point when either the influx of impurities 

liberated from the wall or the density is too high  
−  For NSTX this can happen at Ip = 100 to 300 kA and limit the  current ramp-

rate during start-up so discharge fails 

9 
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10-31"10-32"

It has been known for a long time that Low Z impurity 
radiation can cause excessive energy losses at low Te 
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•  Coronal equilibrium 3% O with ne of 3 X 1019 m-3 VL 
(150V) 

•  Radiation Barrier: The radiated power must be less than 
the input power or  the discharge will cool and collapse!

•  High Z materials have lower sputtering yields at low T so 
are less important at start-up	


From D.E. Post et al., At. Data Nucl. Data Tables 2, 400, 1977!

Radiated power Prad ~ neΣnZf(Z,Te)!

From Hawryluk and Schmidt, 
1976 Nucl. Fusion 16 775 !
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Too high prefill (low E/p) breaks down but fails to start Ip up, 
too low prefill (or low fueling) gives higher Ip, but instabilities 
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• Too high prefill raises Hα and C 
radiation!
• Causes Ip to not reach target of 
90 kA at 20 ms!

• Too low prefill does not cause 
discharge to  fail to break-down!
• 2x10-6 is enough to make plasma 
(zero does fail)!
• Low p has Hα spikes associated 
with MHD!
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Impurity burn through has presented difficulties to most 
tokamaks, particularly early in the  machine’s operation 
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•  Solutions employed to minimize  impurity influx include  
−  High temperature vacuum bake (to 350° to remove water 

and  complex hydrocarbons) 
− Glow discharge cleaning (removes oils and He GDC 

removes H/D) 
−  Boronization (various application techniques, reduces O 

probably by making volatile compounds with CBH and O) 
− Effect can persist after a vent 

−  Lithium coatings (Reduces C, O  and  H/D) 
−  Ti gettering (coats surfaces reduces O, H/D  and C) 
−  Use of metal walls can limit  the source of  low Z  impurities 

(ITER  plans include Be which radiates significantly less 
than C or O) 

− More about these on coming slides 
•  Alternatively auxiliary heating can be employed to burn through 

the low Z impurities and heat the  plasma 
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Most tokamak experience is with graphite covered walls and 
limiters and the chemistry of C plays a large role in start-up 

13 

Recent exceptions ASDEX-U, C-MOD, JET!

•  Graphite can hold about 1 T•l of water per gram 
−  About 1 liter of water in a ton of graphite 
−  Diffusion rate of water in graphite is very low at room emperature 
−  If graphite is not baked the bulk provides a large source of water that will 

diffuse to the surface when it  is  heated by the plasma 
−  The oxygen in water that comes from the surface can cause a radiation 

collapse 
•  Only surface concentration matters to plasma 
•  Diffusion rate increases 10 times for each 60°C rise 
•  Experiments indicate 350°C bake in vacuum is needed to remove 

most of water from graphite* 
•  TFTR disruptive discharge cleaning 

•  Graphite can trap up to about 1 atom of H per atom of C  
−  The H is easily sputtered by plasma and sputtered C striking the surface 

can release multiple H this leads to high density 
−  To remove most H from C requires 1000°C bake 

!
* Bohdanski et al., JNM 162-164 (1998) 861-864.!
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Why do we bakeout? 

14 

Upper divertor temperature!

Target temperature!
Factor of ~100!

Bakeout raises 
water outgassing 
rates from 
Carbon by an 
order of 
magnitude per 
60°C!
1day at 350° = 100 

days at 220°C = 
1400 years at 
room 
temperature"

D. Gates!
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Glow Discharge Cleaning and Boronization 

•  In past, performed extensive glow-discharge cleaning to remove 
contaminants and residual plasma constituents from PFCs 
–  2 stainless-steel anodes at Bays G, K on outer VV near midplane 
–  ~3 A total current at ~550 V with gas pressure 2 - 5 mTorr 
–  Deuterium GDC used to remove oxygen-bearing contaminants at end of bake 
–  Helium GDC to remove hydrogenic species 

•  After DGDC (~2hr); at start of each run day (30min); between shots (7–15 min) 
•  More recently, eliminated DGDC and cut back on HeGDC 
•  Also used “boronization” at end of bake and periodically during each run 

–  Run GDC in mixture of 5% deuterated trimethyl boron (TMB - (CD3)3B), 95% He 
–  Generally used half or full bottle containing 10 g TMB over 2 - 3 hours 

•  TMB is toxic, pyrophoric, expensive (bottle costs ~$3K) 
–  Apply ~1hr pure HeGDC afterwards to deplete D from deposited B/C/D layer 
–  B has high affinity for oxygen and sequesters it as borates (or makes it volatile) 
–  B layer does not sequester impinging hydrogenic species significantly 

M. Bell!
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Dual LITERs Replenish Lithium Layer on Lower 
Divertor Between Tokamak Discharges  

16 

LITER 
Canisters 

ROTATABLE 
SHUTTER"

Electrically-heated stainless-steel canisters with re-entrant exit ducts  
Mounted 150° apart on probes behind gaps between upper divertor plates 
Each evaporates 1 – 40 mg/min with lithium reservoir at 520 – 630°C 
Rotatable shutters interrupt lithium deposition during discharges & HeGDC 
Withdrawn behind airlocks for reloading and initial melting of lithium charge 
Reloaded LITERs 6 times during 2009 run (Mar - Aug): ~250g on PFCs 

H. Kugel, M. Bell 
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Dual LITERs Deposit Lithium on Lower PFCs 
Including Divertor Plates

17 

Measured deposition pattern in laboratory tests with scannable quartz-crystal 
micro-balance (QMB)  

–  Plumes of lithium vapor are roughly Gaussian in angular distribution 
–  Good agreement with model based on molecular flow through exit duct 

Lithium applied between discharges typically 20 – 600 mg 
– More than needed to react all injected D2, typically 5 – 15 mg 

In-situ QMB data implies deposited lithium thickness is 5 – 160 nm on inner 
divertor plate near strike point of standard NSTX plasmas 

Modeled deposition pattern!
LITERs"

H. Kugel, L. Zakharov, M. Bell  
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Lithium Coating Reduces Deuterium Recycling, Suppresses 
ELMs, Improves Confinement 

No lithium (129239);  260mg lithium (129245)"

Without ELMs, impurity accumulation 
increases radiated power and Zeff  

H. Kugel, B. LeBlanc, R.E. Bell, M. Bell  

Without ELMs, impurity accumulation 
increases radiated power and Zeff  
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Solid Lithium Does Pump Deuterium but Normally We 
Increase Fueling to Avoid Early Locked Modes  

Tangentially viewing camera for edge Dα emission shows greatly reduced neutral D 
density across outboard midplane with lithium from LITER 

Lower density is achievable early in discharges but likelihood of deleterious locked 
modes increases: we need to learn to avoid locked-modes to exploit lithium  

Measured at 0.22s 

B. LeBlanc, P. Ross, M. Bell 

CS Limiter D discharges  
(0.9MA, 0.45T, 4MW NBI) 
with same gas fueling after"
Helium conditioning and 

lithium pellets (~30mg) injected into 
 preceding 10 OH He discharges "

0.14 – 0.18 s

0.5 1.0 1.5

ne
(1019m-3) Ist shot

after Li

Before Li
(after He)

Radius (m)
0.0

0.5

1.0

2.0

1.5

2008-9 LSN discharges 
100 – 600 mg fresh Li from LITER 

(25 – 160 nm thick at inner divertor) 
ΔND ~ 0.8 × 1021	
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Analysis of Carbon Tile Surfaces Confirms  
Migration of Lithium Under Plasma Fluxes 

•  Analysis performed on surface of carbon tiles as removed from vessel  
•  Used ion-beam nuclear-reaction analysis for lithium and deuterium areal 

density in surface layer 

W. Wampler (SNL), C. Skinner, H. Kugel  

0!
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4!

5!
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Scan across lower divertor 

Peak lithium density remaining on inner divertor ~0.6 mg·cm-2  
Total deposition there estimated at ~8 mg·cm-2  
Less than 1% of deposited lithium remains in high heat flux region 
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JET ITER-Like Wall: 
the density at the time of burn-through depends on fill 
pressure, and the radiated  power depends on the  wall 

21 

•  For discharges with  similar start-up conditions Vloop =12 V, E = 0.8 V/m 
•  At tAVA the density is prefill pressure for ILW and C-Wall 
•  At tBURN the density is prefill pressure + some extra for C-Wall 
•  At tBURN radiated power is a steep function of density for C-Wall 

–  No  non-sustained breakdowns with ILW due to deconditioning  
P. deVries, 25th IAEA, SanDiego, EXD4-2(2012)"
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Recently H-T Kim developed a model (DYON) that uses a 
dynamic recycling and sputtering model for JET start-up 
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•  Deuterium confinement time τD"
1/τD = 1/τD,|| + 1/τD,⊥	

"

•  The rotational transform  will increase the effective distance to  the wall 
as Ip increases so!

L(t) ~ (0.25 a(t) BT/Bz(t) exp(Ip(t)/Iref)) "
−  Iref  is chosen so  the plasma’s poloidal field exceeds the stray field"

•  The deuterium confinement time due to parallel particle loss is  ""
                τD,|| = L(t)/Cs where Cs is  the sound speed  (Te + Ti)1/2/mD"
"
•  For Perpendicular transport use Bohm diffusion"

•  A dynamic recycling coefficient is used for deuterium "

•  Physical sputtering and a simple  chemical  sputtering model  is used:   
Oà C+O and C + 4Dà CD4"

Hyun-Tae Kim, W. Fundamenski, A.C.C. Sips et al.Nucl. Fusion 52 (2012) 103016"
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Model results agree  well with experiment and demonstrate 
the  importance of including the parallel loss 

23 

•  Blue lines indicate simulation 
results 

•  Red curves on the plots are 
JET data 

Ip!

PRad!

VLoop!

Te!

ne!

1 MA!

20 V!

2 MW!

400 eV!

4 X 1018/m2!

Hyun-Tae Kim, W. Fundamenski, A.C.C. Sips et al.Nucl. Fusion 52 (2012) 103016"

C-II!

•  The temporal agreement for the C-II 
emission gives confidence that 
impurities are being well-modeled"

•  The time evolution of the C charge 
states in  the model indicates  from 
0.15 s on C is fully ionized"

•  The early density discrepancies may 
be due to geometrical effects"

•  This recent start-up model is self-
consistent and includes the important 
time evolution of impurities from the 
wall due to sputtering by plasma ions"

Time(s)!0! 0.5!
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ECRH has been used on many devices to provide pre-
ionization and electron  heating during start-up 
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Fast-framing camera of CIII emission during 2nd harmonic ECH in  DIII-D 
G. L. Jackson PhysPlasmas_17_056116 (2010)"

•  2nd Harmonic X-Mode (E⊥B) and fundamental O-Mode (E||B) launched 
from the low field side can access the plasma 

•  Use of ECH lowers the required field for breakdown below 0.3 V/m 

2ωce"
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Causes of discharge failure are not always obvious 
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•  The start-up of the first plasma on EAST "
−  Early attempts disrupted at Ip ~ 35 kA at 70-100 ms, unclear why"
−  The breakdown resistors were in the circuit for 100 ms"
−  Mutual from central coils exceeded vertical field power supply capability 

(which have since been upgraded)"
•  Model predicted more negative vertical field than achieved"
•  Camera images indicate plasma was at large R"
•  Failure was due to too small vertical field "
•  Shortened the breakdown resistor time to 50 ms"

EAST First Plasma! CCD image just after break-down suggests 
failure to burn-through "

From J. Leuer, et al., Fusion Science and Tech.. 57 2010!
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For all tokamaks it is essential to apply the proper vertical 
field and  to have a vertically and radially stable field pattern 

26 
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Vertical field!
(circular plasma)!
!
!
!
Radial Field!
!
Field index n!

•  KSTAR has ferromagnetic material in the coil jackets  
•  Higher vertical field at small R which increases field index 
•  Important effect for field null and low Bz 
•  Plasma start-up variability, particularly smaller R, sometimes resulted in 

radial instability before the effect of magnetic material was considered 
•  Modifying the start-up field pattern to account for ferromagnetic effects 

produced a more stable configuration 
•  Greatly improved reliability when implemented in 2010 and allowed 

ohmic start-up without ECH for the first  time in KSTAR 
J. Kim, Nucl. Fusion 51 (2011) 083034 
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Start-up is dependent upon wall conditions 

27 

•  NSTX performs HHFW heating experiments, often using 
He as the working gas (with D prefill) to achieve reliable 
density and antenna loading"

•  After a series of He discharges, the D recycling is low 
and plasma is nearly all He"

•  This low recycling can result in behavior like with the JET-
ILW that requires fueling to increase the density"

•  On at least two occasions on the first plasma shot 
following a day of He HHFW experiments, runaway 
discharges were formed (low ne, very high Te)"

•  The hard X-rays caused by the energetic electrons hitting 
the wall resulted in damage to electronics in the test cell"
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The choice of plasma growth strategy determines the current 
density profile evolution 
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• Constant q growth realizes fully  evolved 
j(r) profiles earlier and has higher internal 
inductance, li"
• Full aperture scenario has broader j(r) 
and minimizes li "
• Each strategy is affected by ramp-rate, 
impurities and heating power and timing 
typically, dIp/dt < 0.5 MA/s "
" NSTX EFIT at 25  100  175  250 ms!

135684!104215!

JET!

Wesson, J., et al., Nucl. Fusion 29 (1989) 641.!

Internal inductance!Ip!

q-95!
gap!
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Volt-second (flux) consumption 
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NSTX seldom runs with no auxiliary power so data for purely 
inductive flux consumption is sparse!
Menard, Nucl. Fus. 41 (2001) summarizes early NSTX results!

€ 
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CE ≡ ΔΦR /µ0R0Ip

Ejima coefficient !

Φ Computed at the end of the Ip ramp!

Ejima - Wesley coefficient !

€ 

CE−W ≡ ΔΦI + ΔΦR( ) /µ0R0Ip
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Summary 
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• Scenario with low stray fields over much of vessel 
volume!
• Loop voltage of 2V/turn is adequate to break-down 
prefill gas of 5.5 x 10-5 Torr!
• Low Z impurities or too high prefill prevents Ip ramp-up!
• Too low gas fueling (low prefill and no early gas puff) 
leads to MHD or worse!
• Typical ramp-up has a goal of keeping li low!
• NSTX  was starved for V•s but could reach 1 MA 
ohmically with a short flattop; NSTX-U has 3 X NSTX 
flux for a substantial flattop at 2 MA!


