

NSTX Operator Training: 3-D Field Detection and Application + Beta Control

Stefan Gerhardt

College W&M
Colorado Sch Mines
Columbia U
CompX
General Atomics
INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL PPPL

PSI

Princeton U Purdue U

SNL

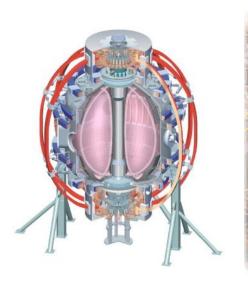
Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD U Colorado


U Illinois

U Maryland

U Rochester

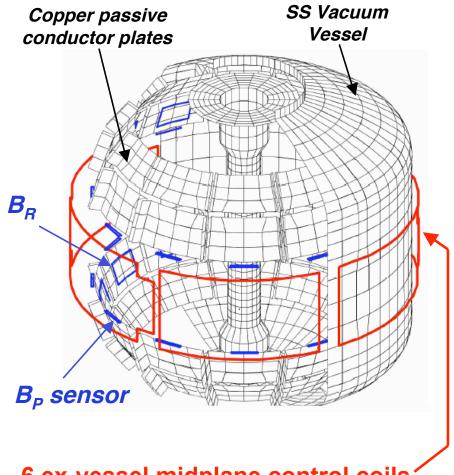
U Washington

U Wisconsin

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U Niigata U **U** Tokyo **JAEA** Hebrew U Ioffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

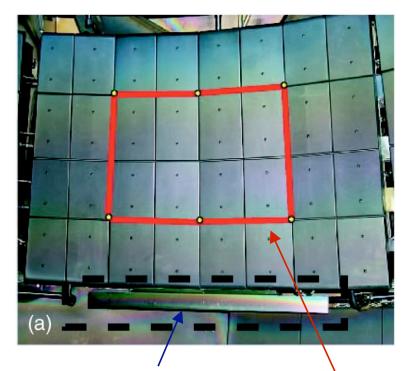
Topics

- Motivation for 3-D field sensors and coils.
- Overview
 - Layout of sensors and coils
 - Overall scheme for mode detection, feedback, and pre-programmed 3-D field application
- How to detect a mode
 - Sensor compensation
 - Mode Identification
- How to get current in the coils
 - RWM feedback/DEFC & pre-programmed coil currents
- State Space Controller
- NB Control From PCS
 - Introduction and methods
 - Technical Considerations
 - Examples



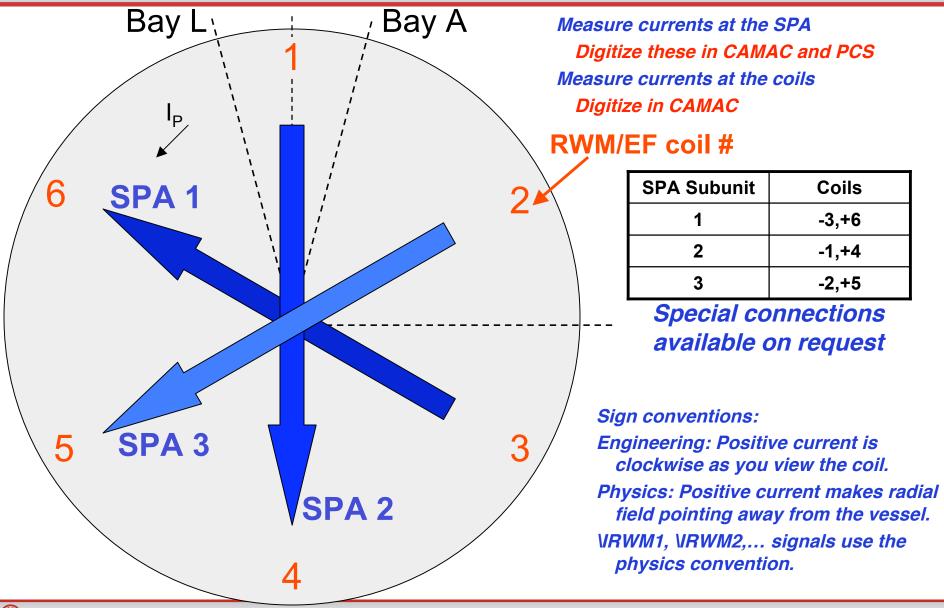
Why Do We Have 3-D Field Detection and Application?

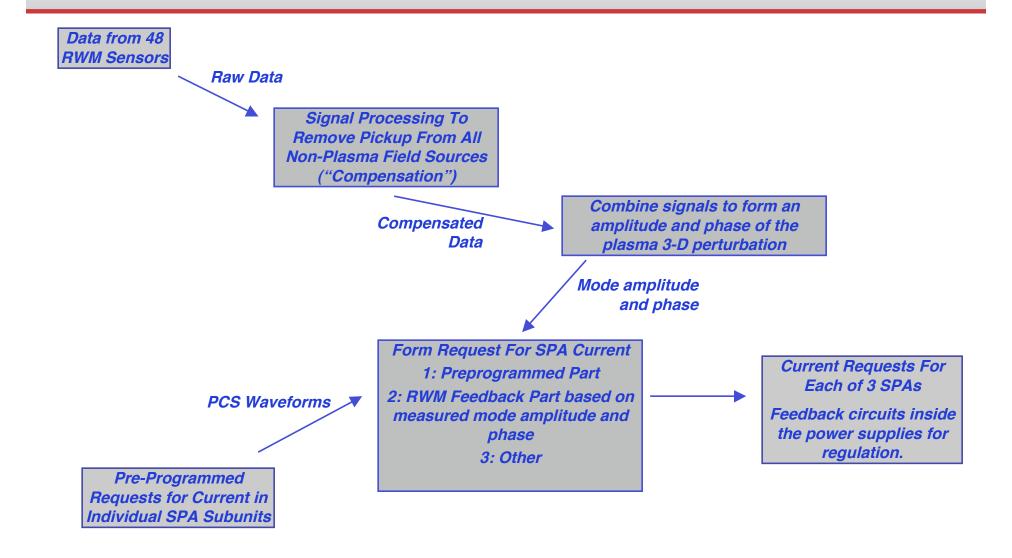
- Deliberately apply fields as perturbations:
 - Locked mode thresholds vs. density, field,...
 - Magnetic braking to study "stuff" as a function of rotation.
 - (N)RMP for modifications to pedestal transport & ELM suppression.
 - or ELM triggering.
 - Strike-point splitting, 3-D effects on divertor loading, "homoclinic tangles"
- Control of Error Fields
 - Small non-axisymmetries in machine construction lead to error fields.
 - Plasma can amplify the error field (RFA), causing their effect to become stronger....effect is stronger at higher β .
 - Detect the amplified error field and suppress it with feedback
 - Called "dynamic error field correction" (DEFC).
 - Only detect and correct n=1 fields.
- Suppression of Resistive Wall Modes.
 - RWM=external kink instability modified by the resistive wall.
 - Both pressure and current driven kinks can become RWMs.
 - Grows on the scale of the wall time=L/R time for dominant eddy current patterns. (10 msec).
 - Detect and suppress it.
 - Call this "fast" n=1 feedback.


Midplane External Coils and Off-Midplane Sensors

6 ex-vessel midplane control coils

VALEN Model of NSTX (Columbia Univ.)


Sontag et al., Physics of Plasmas **12** 056112 (2005)


B_P Sensor in a Sealed Stainless Box

B_R Sensor as a loop behind the tiles, but in front of the plate.

Each SPA is (Usually) Connected to a Pair of Anti-Series Coils

Overall Scheme

Signal Compensation For RWM Coils

- Any given sensor detects the field from the plasma perturbation, plus other sources.
 - Other sources include direct coil pickup, the tilting TF coil, eddy currents.
- For each sensor, find a mathematical model for that pickup and subtract.

Static

Direct pickup between coil and sensor. $P_{i,i}$ are mutual inductances

$$C_{i,static} = \sum_{j=0}^{NumCoils-1} p_{i,j} I_j$$

816 Coefficients

OHXTF

Direct n=1 pickup from the tilting TF coil

$$f_i = LPF(I_{OH} \times I_{TF}; \tau_{OHxTF,i})$$

$$f_i = \frac{f_i}{1 + \beta_i f_i}$$

if
$$f_i > 0$$
 then $C_{OH \times TF, i} = r_{p,i} f_i$

if
$$f_i < 0$$
 then $C_{OH \times TF, i_i} = r_{n,i} f_i$

96 Coefficients

AC Compensation For Fluctuating RWM Coil Currents

Eddy currents driven by RWM coils make fields...subtract these out.

$$C_{AC,i}(t) = \sum_{j=0}^{5} \sum_{k=0}^{k_{\text{max}}} p_{i,j,k} LPF\left(\frac{dI_{RWM,j}(t)}{dt}; \tau_{AC,i,k}\right)$$

504 Coefficients

Final Field For Plasma Mode Identification

$$B_{i,plasma} = B_i - C_{i,static} - C_{i,OH \times TF} - C_{i,AC}$$

Process for Mode Identification

The mode has an amplitude (A_{RWM}) and phase (φ_{RWM})

$$B = A_{RWM} \cos(\phi - \phi_{RWM})$$

At the ith sensor, the measured amplitude is:

$$B_{i} = A_{RWM} \cos(\phi_{i} - \phi_{RWM}) \Rightarrow$$

$$B_{i} = A_{RWM} \cos(\phi_{RWM}) \cos(\phi_{i}) + A_{RWM} \sin(\phi_{RWM}) \sin(\phi_{i}) \Rightarrow$$

$$B_{i} = C_{RWM} \cos(\phi_{i}) + S_{RWM} \sin(\phi_{i})$$

Many sensors...build a matrix and invert it!

$$\begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{bmatrix} = \begin{bmatrix} \cos(\phi_1) & \sin(\phi_1) \\ \cos(\phi_2) & \sin(\phi_2) \\ \vdots & \vdots \\ \cos(\phi_N) & \sin(\phi_N) \end{bmatrix} \begin{bmatrix} C_{RWM} \\ S_{RWM} \end{bmatrix} = M \begin{bmatrix} C_{RWM} \\ S_{RWM} \end{bmatrix}$$

$$\begin{bmatrix} C_{RWM} \\ S_{RWM} \end{bmatrix} = M^{-1} \begin{bmatrix} B_1 \\ B_1 \\ \vdots \\ B_N \end{bmatrix}$$

$$A_{RWM} = \sqrt{C_{RWM}^2 + S_{RWM}^2}$$

$$\phi_{RWM} = a \tan(S_{RWM} / C_{RWM})$$

Many more details in reality, but this is the idea.

Algorithms for Mode Identification: mid

- mid="Mode Identification" (modeid Category)
- Applies "static compensation only".
- Inputs:
 - Rezeroing time (time at end of I_p flat top where sensor values are reset to zero).
 - The Matrix (2x24): see previous slide.
 - Actual numbers come from Stefan, Steve, or Jon.

Outputs:

- Passed within PCS to RWM feedback algorithms.
- Amplitude and phase of mode as detected by B_P sensors.
- Amplitude and phase of mode as detected by B_R sensors.
- Amplitude and phase of mode as detected by B_R + B_P sensors.

Algorithms for Mode Identification: miu New for 2010!

- miu="Mode Identification Upgrade" (modeid Category)
- Applies three levels of compensation:
 - Static compensation.
 - OHxTF compensation (with an on/off switch).
 - AC compensation (with an on/off switches).

Inputs:

- Rezeroing time (time at end of I_D flat top where sensor values are reset to zero).
- Switches to turn off various compensations
- The Matrix (2x24): see previous slides.
 - Actual numbers come from Stefan, Steve, or Jon.

Outputs:

- Passed within PCS to RWM feedback algorithms.
- Amplitude and phase of mode as detected by B_P sensors.
- Amplitude and phase of mode as detected by B_R sensors.
- Amplitude and phase of mode as detected by B_R + B_P sensors.
- Compensated sensor data for the "advanced controller".

RWM/DEFC Feedback Methodology "smf algorithm"

- We know the amplitude $B_1(t)$ and phase $\theta_1(t)$ of the 3-D field.
- Apply an n=1 field with:
 - Amplitude proportional to the 3-D field amplitude: G_{RWM}(t) L_{eff}⁻¹
 - Fixed phase difference: $\delta(t)$

$$\begin{split} I_{SPA-1}^{B_{P},RWM}(t) &= G_{B_{P}}(t)B_{P1}(t)L_{eff}^{-1}\cos(300^{\circ} - \theta_{1}(t) + \delta(t)) \quad \Rightarrow \quad K_{SPA-1}^{B_{P},RWM}(t) = LPF\Big(I_{SPA-1}^{B_{P},RWM}(t);\tau\Big) \\ I_{SPA-2}^{B_{P},RWM}(t) &= G_{B_{P}}(t)B_{P1}(t)L_{eff}^{-1}\cos(180^{\circ} - \theta_{1}(t) + \delta(t)) \quad \Rightarrow \quad K_{SPA-2}^{B_{P},RWM}(t) = LPF\Big(I_{SPA-2}^{B_{P},RWM}(t);\tau\Big) \\ I_{SPA-3}^{B_{P},RWM}(t) &= G_{B_{P}}(t)B_{P1}(t)L_{eff}^{-1}\cos(240^{\circ} - \theta_{1}(t) + \delta(t)) \quad \Rightarrow \quad K_{SPA-3}^{B_{P},RWM}(t) = LPF\Big(I_{SPA-3}^{B_{P},RWM}(t);\tau\Big) \end{split}$$

Generate similar requests based on the B_R sensors:

$$K_{SPA-1}^{B_R,RWM}(t)$$
, $K_{SPA-2}^{B_R,RWM}(t)$, $K_{SPA-3}^{B_R,RWM}(t)$

Can also request pre-programmed SPA currents:

$$I_{SPA-1}^{\operatorname{Pr} e-\operatorname{Pr} og}(t), \ I_{SPA-2}^{\operatorname{Pr} e-\operatorname{Pr} og}(t), \ I_{SPA-3}^{\operatorname{Pr} e-\operatorname{Pr} og}(t)$$

OH x TF EF correction algorithm:

$$I_{SPA-1}^{OH imes TF}(t)$$
, $I_{SPA-2}^{OH imes TF}(t)$, $I_{SPA-3}^{OH imes TF}(t)$

Total current request:

$$I_{SPA-1}^{\text{Pr }e-\text{Pr }og}(t) = I_{SPA-1}^{OH \times TF}(t) + K_{SPA-1}^{B_P,RWM}(t) + K_{SPA-1}^{B_R,RWM}(t) + I_{SPA-1}^{\text{Pr }e-\text{Pr }og}(t)$$

There Are Many More Algorithms in the RWM Category

- "spa"=SPA
 - Pre-programmed EFC coil currents only.
- "fec": Field Error Correction
 - Pre-programmed currents
- "imf"=Initial Mode Feedback
 - First generation of RWM control.
 - No low-pass filtering.
 - No separate gains for B_P and B_R perturbations.
- "smf"=Second mode feedback
 - This is almost always the correct choice.

Advanced RWM Controller

- Development effort lead by Oksana Katsuro-Hopkins of CU.
 - Others: S. A. Sabbagh, J. Bialek, S.P. Gerhardt.
- State-Space implementation of RWM feedback.
 - "State" is a mathematic representation of the system status
 - Plasma surface currents to represent the RWM.
 - Vessel and plate currents (VALEN EM model).
 - Coil currents.
 - Solve a linearized version of the dynamical system equations to determine optimal correction currents.
 - A true model of the RWM is built into the controller.
 - No PID..."Gains" are numbers in a bunch of matrices.
 - Will generate requests for currents: $I_{SPA-1}^{State-Space\ RWM}(t)$, $I_{SPA-2}^{State-Space\ RWM}(t)$, $I_{SPA-3}^{State-Space\ RWM}(t)$
- Add the optimal controller request to other requests.
 - Preprogrammed, Proportional feedback,...
- May be tested in the upcoming run.

Beam Control from PCS

- This remains a development effort...what I say here may change.
- Why?
 - Would like to be able to restore the beam waveforms from previous shots.
 - Would like to be able to regulate the β_N values so as to avoid instability.
 - Would like to turn off beams before (automatically) ramping down I_P.
- How?
 - Preprogrammed modulations (what we know before the shot)
 - Are entered as waveforms into PCS.
 - Info send to the EPICS beam control software via an EPICS-PCS link.
 - Changes must be "approved" by NB operators pressing a button on their screens.
 - Feedback (changes we can't time before the shot).
 - Parameters that govern the feedback are PCS waveforms and parameter data.
 - Target waveforms, gains, deadbands, batting order,...
 - Issue "blocks" through a FOM-D into the TFTR β -feedback chassis at the D-site 138' level.
 - EPICS turns the beams on, and PCS may then block them.
 - Only allowed 20 blocks per shot, with 10 msec minimum on/off times.

Implementation of β_N Control in NSTX

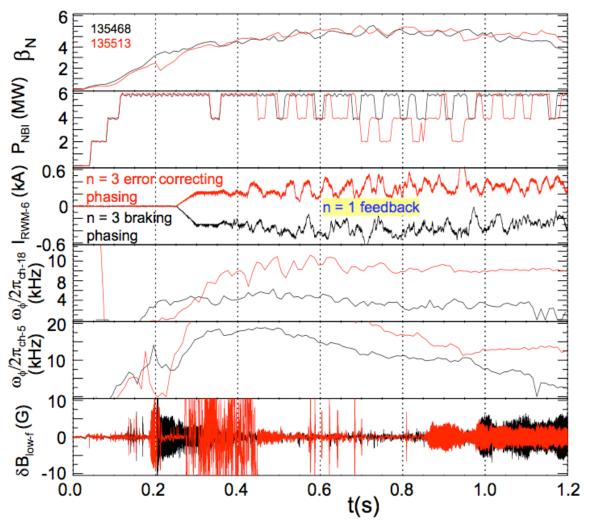
• Compare filtered β_N value from rtEFIT to a request, and compute an error.

$$e = \beta_{N,reqeust} - LPF(\beta_{N,RTEFIT}; \tau_{LPF})$$

Use PID on the error to compute a new requested power.

$$P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int e dt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$$

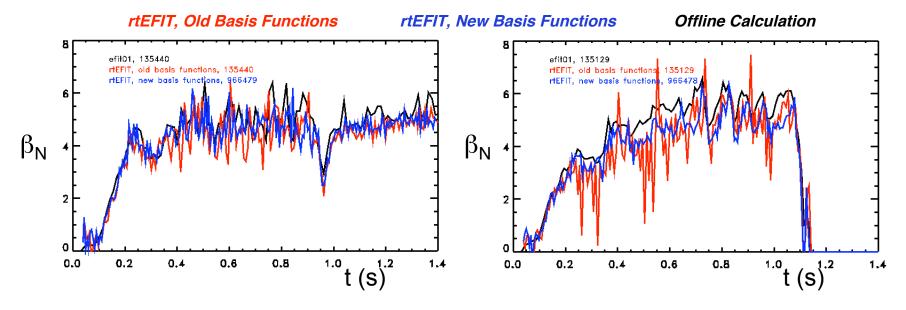
$$\overline{C}_{\beta_N} = 1000 \cdot \tau \cdot \frac{I_P V B_T}{200 \mu_s a}$$


- Use power from the PID operation, source powers, and "batting order" to determine the duty cycles for each source.
- Use the duty cycles and min. on/off times to determine when to block.
- NB controls at D-site turn the beams on, and we issue requests to turn the beams off.
 - PCS is allowed to block the beam up to 20 times per discharge, with 10 msec minimum on/off times.

Many Available Adjustments For β_N Control (i.e. PCS Waveforms)

- Filter time constant on the β_N value sent from rtEFIT.
 - Useful for smoothing transients and "noise" in the rtEFIT β_N .
- Proportional, integral, and derivative gains.
 - Determines the response of the system to transients.
- Batting order array.
 - Determines which sources modulate
 - Switch to a different source if a given source reaches the maximum number of blocks.
 - Also able to prevent A modulations, to keep MSE and CHERS.
- Source powers
 - Can be adjusted in order to prevent modulations.
- Minimum Source On/Off Times.
 - Smaller values will lead to better control, but possibly at the expense of source reliability.
 - 20 msec. has been used so far, with reasonable success (still rather coarse compared to the confinement time).
- Explicit injected power request.
 - Request a power waveform, and PCS determines modulations to achieve it.
- This is all part of the "bnf"="beta normal feedback" algorithm.

β_N Control Has Been Demonstrated in 2009


- β_N algorithm compensates for loss of confinement with n=3 braking.
- But not done:
 - Gains were not optimized.
 - Modified the PID operator for the 2010 run...need to re-tune.
 - XMP to finish this task in 2010.

Modifications to the rtEFIT Basis Functions Resulted in Improved Real-time Reconstructions

- Occasional poorly converged equilibria lead to incorrect outer gap, β_N
 - Kick off an deleterious transient in the vertical field coil current.
 - Edge current not allowed
- New basis function model based on those developed for off-line magnetics-only reconstruction (Columbia University) $p'(\psi_n) = a_1 \psi_n (1 \psi_n)$
 - Tested on literally > 2 million equilibria
 - Finite edge current through ff'(ψ_n)

$$ff'(\psi_n) = b_0 + b_1 \psi_n \left(1 - \frac{1}{3} \psi_n^2 \right) + b_2 \psi_n^2 \left(1 - \frac{2}{3} \psi_n \right)$$

- Considerable real-time reconstruction improvement
 - Reduction in β_N "noise" indicative of improved reconstructions

